Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Apr;146(1):291–297. doi: 10.1128/jb.146.1.291-297.1981

Catabolism of tryptophan, anthranilate, and 2,3-dihydroxybenzoate in Trichosporon cutaneum.

J J Anderson, S Dagley
PMCID: PMC217081  PMID: 7194334

Abstract

Trichosporon cutaneum degraded L-tryptophan by a reaction sequence that included L-kynurenine, anthranilate, 2,3-dihydroxybenzoate, catechol, and beta-ketoadipate as catabolites. All of the enzymes of the sequence were induced by both L-tryptophan and salicylate, and those for oxidizing kynurenine and its catabolites were induced by anthranilate but not by benzoate; induction was not coordinate. Molecular weights of 66,100 and 36,500 were determined, respectively, for purified 2,3-dihydroxybenzoate decarboxylase and its single subunit. Substrates for this enzyme were restricted to benzoic acids substituted with hydroxyl groups at C-2 and C-3; no added coenzyme was required for activity. Partially purified anthranilate hydroxylase (deaminating) catalyzed the incorporation of one atom of 18O, derived from either 18O2 or H2(18)O, into 2,3-dihydroxybenzoic acid.

Full text

PDF
291

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. J., Dagley S. Catabolism of aromatic acids in Trichosporon cutaneum. J Bacteriol. 1980 Feb;141(2):534–543. doi: 10.1128/jb.141.2.534-543.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  3. Floss H. G., Guenther H., Groeger D., Erge D. Origin of the oxygen atoms in the conversion of anthranilic acid to 2,3-dihydroxybenzoic acid by Claviceps paspali. Arch Biochem Biophys. 1969 Apr;131(1):319–320. doi: 10.1016/0003-9861(69)90138-6. [DOI] [PubMed] [Google Scholar]
  4. Gibson D. T., Cardini G. E., Maseles F. C., Kallio R. E. Incorporation of oxygen-18 into benzene by Pseudomonas putida. Biochemistry. 1970 Mar 31;9(7):1631–1635. doi: 10.1021/bi00809a024. [DOI] [PubMed] [Google Scholar]
  5. Gröger D., Erge D., Floss H. G. Zur Biosynthese von 2.3-Dihydroxybenzoesäure in Submerskulturen von Claviceps paspali Stevens et Hall. Z Naturforsch B. 1965 Sep;20(9):856–858. [PubMed] [Google Scholar]
  6. HAYAISHI O., STANIER R. Y. The bacterial oxidation of tryptophan. III. Enzymatic activities of cell-free extracts from bacteria employing the aromatic pathway. J Bacteriol. 1951 Dec;62(6):691–709. doi: 10.1128/jb.62.6.691-709.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HAYAISHI O., TANIUCHI H., TASHIRO M., KUNO S. Studies on the metabolism of kynurenic acid. I. The formation of L-glutamic acid, D- and L-alanine, and acetic acid from kynurenic acid by Pseudomonas extracts. J Biol Chem. 1961 Sep;236:2492–2497. [PubMed] [Google Scholar]
  8. Hareland W. A., Crawford R. L., Chapman P. J., Dagley S. Metabolic function and properties of 4-hydroxyphenylacetic acid 1-hydroxylase from Pseudomonas acidovorans. J Bacteriol. 1975 Jan;121(1):272–285. doi: 10.1128/jb.121.1.272-285.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kobayashi S., Kuno S., Itada N., Hayaishi O., Kozuka S., Oae S. O-18 studies on anthranilate hydroxylase--a novel mechanism of double hydroxylation. Biochem Biophys Res Commun. 1964 Aug 11;16(6):556–561. doi: 10.1016/0006-291x(64)90192-5. [DOI] [PubMed] [Google Scholar]
  10. Leung P. T., Chapman P. J., Dagley S. Purification and properties of 4-hydroxy-2-ketopimelate aldolase from Acinetobacter. J Bacteriol. 1974 Oct;120(1):168–172. doi: 10.1128/jb.120.1.168-172.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mazin A. L., Sulimova G. E., Vanyushin B. F. Granulated hydroxyapatite: preparation and chromatographic properties. Anal Biochem. 1974 Sep;61(1):62–71. doi: 10.1016/0003-2697(74)90333-9. [DOI] [PubMed] [Google Scholar]
  12. Rao P. V., Moore K., Towers G. H. O-pyrocatechiuc acid carboxy-lyase from Aspergillus niger. Arch Biochem Biophys. 1967 Nov;122(2):466–473. doi: 10.1016/0003-9861(67)90220-2. [DOI] [PubMed] [Google Scholar]
  13. Rao P. V., Moore K., Towers G. H. The conversion of tryptophan to 2,3-dihydroxybenzoic acid and catechol by Aspergillus niger. Biochem Biophys Res Commun. 1967 Sep 27;28(6):1008–1012. [PubMed] [Google Scholar]
  14. Rao P. V., Sreeleela N. S., Premakumar R., Vaidyanathan C. S. Regulation of the pathway for the degradation of anthranilate in Aspergillus niger. J Bacteriol. 1971 Jul;107(1):100–105. doi: 10.1128/jb.107.1.100-105.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reiner A. M., Hegeman G. D. Metabolism of benzoic acid by bacteria. Accumulation of (-)-3,5-cyclohexadiene-1,2-diol-1-carboxylic acid by mutant strain of Alcaligenes eutrophus. Biochemistry. 1971 Jun 22;10(13):2530–2536. doi: 10.1021/bi00789a017. [DOI] [PubMed] [Google Scholar]
  16. Reiner A. M. Metabolism of benzoic acid by bacteria: 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid is an intermediate in the formation of catechol. J Bacteriol. 1971 Oct;108(1):89–94. doi: 10.1128/jb.108.1.89-94.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sparnins V. L., Burbee D. G., Dagley S. Catabolism of L-tyrosine in Trichosporon cutaneum. J Bacteriol. 1979 May;138(2):425–430. doi: 10.1128/jb.138.2.425-430.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sparnins V. L., Chapman P. J., Dagley S. Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid. J Bacteriol. 1974 Oct;120(1):159–167. doi: 10.1128/jb.120.1.159-167.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. TANIUCHI H., HATANAKA M., KUNO S., HAYAISHI O., NAKAJIMA M., KURIHARA N. ENZYMATIC FORMATION OF CATECHOL FROM ANTHRANILIC ACID. J Biol Chem. 1964 Jul;239:2204–2211. [PubMed] [Google Scholar]
  20. TANIUCHI H., HAYAISHI O. Studies on the metabolism of kynurenic acid. III. Enzymatic formation of 7,8-dihydroxykynurenic acid from kynurenic acid. J Biol Chem. 1963 Jan;238:283–293. [PubMed] [Google Scholar]
  21. TASHIRO M., TSUKADA K., KOBAYASHI S., HAYAISHI O. A new pathway of D-tryptophan metabolism: enzymic formation of kynurenic acid via D-kynurenine. Biochem Biophys Res Commun. 1961 Nov 20;6:155–160. doi: 10.1016/0006-291x(61)90120-6. [DOI] [PubMed] [Google Scholar]
  22. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES