Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Apr;146(1):391–397. doi: 10.1128/jb.146.1.391-397.1981

Stereological analysis of plasmolysis in logarithmic-phase Bacillus licheniformis.

B F Schall, G V Marathe, B K Ghosh
PMCID: PMC217095  PMID: 7217004

Abstract

The plasmolytic response of Bacillus licheniformis 749/C cells to the increasing osmolarity of the surrounding medium was quantitated with stereological techniques. Plasmolysis was defined as the area (in square micrometers) of the inside surface of the bacterial wall not in association with bacterial membrane per unit volume (in cubic micrometers) of bacteria. This plasmolyzed surface area was zero when the cells were suspended in a concentration of sucrose solution lower than 0.5 M, but increased linearly when the sucrose molarity rose above 0.5 M, reaching a plateau value of 3.61 micrometers2/micrometers3 in 2 M sucrose. In contrast, when the bacterial cells were treated with lysozyme plasmolysis increased abruptly from 0.06 micrometers2/micrometers3 in 0.75 M sucrose to 4.09 micrometers2/micrometers3 in 1 M sucrose. When the time of exposure was prolonged, the degree of plasmolysis increased gradually for the duration of the experiment (30 min) after exposure to 1 M sucrose without lysozyme, whereas with lysozyme plasmolysis reached a maximum (4.09 micrograms2/micrometers3) in 2 to 5 min. The examination of ultrastructure showed that the protoplast bodies of lysozyme-treated cells in 1 M sucrose and untreated cells in 2 M sucrose are maximally retracted from the intact wall of the bacteria; hardly any retraction of protoplasts could be seen for untreated cells in 1 M sucrose. The data suggest that the B. licheniformis cells are isoosmotic to 800 to 1,100 mosM solutions, but are able to withstand much greater osmotic pressure with no signs of plasmolysis because the cell wall and the plasma membrane are held in close association, perhaps by a covalent bond. It is likely that lysozyme weakens this bond by degradation of the peptidoglycan layer. Cellular autolysis also weakens this wall-membrane association.

Full text

PDF
391

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayer M. E. Areas of adhesion between wall and membrane of Escherichia coli. J Gen Microbiol. 1968 Oct;53(3):395–404. doi: 10.1099/00221287-53-3-395. [DOI] [PubMed] [Google Scholar]
  2. Coakley W. T., Bater A. J., Lloyd D. Disruption of micro-organisms. Adv Microb Physiol. 1977;16:279–341. doi: 10.1016/s0065-2911(08)60050-8. [DOI] [PubMed] [Google Scholar]
  3. Corner T. R., Marquis R. E. Why do bacterial protoplasts burst in hypotonic solutions? Biochim Biophys Acta. 1969;183(3):544–558. doi: 10.1016/0005-2736(69)90168-0. [DOI] [PubMed] [Google Scholar]
  4. Ghosh B. K. Grooves in the plasmalemma of Saccharomyces cerevisiae seen in glancing sections of double aldehyde-fixed cells. J Cell Biol. 1971 Jan;48(1):192–197. doi: 10.1083/jcb.48.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ghosh B. K., Nanninga N. Polymorphism of the mesosome in Bacillus licheniformis (749/C and 749). Influence of chemical fixation monitored by freeze-etching. J Ultrastruct Res. 1976 Jul;56(1):107–120. doi: 10.1016/s0022-5320(76)80144-x. [DOI] [PubMed] [Google Scholar]
  6. Ghosh B. K., Sargent M. G., Lampen J. O. Morphological phenomena associated with penicillinase induction and secretion in Bacillus licheniformis. J Bacteriol. 1968 Oct;96(4):1314–1328. doi: 10.1128/jb.96.4.1314-1328.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ghosh B. K. The mesosome--a clue to the evolution of the plasma membrane. Subcell Biochem. 1974 Dec;3(4):311–367. [PubMed] [Google Scholar]
  8. Giesbrecht P., Wecke J., Reinicke B. The demonstration of the existence of an interlayer between the cytoplasmic membrane and the cell wall proper of staphylococci. Arch Microbiol. 1977 Oct 24;115(1):25–35. doi: 10.1007/BF00427841. [DOI] [PubMed] [Google Scholar]
  9. Hartmann R., Bock-Hennig S. B., Schwarz U. Murein hydrolases in the envelope of Escherichia coli. Properties in situ and solubilization from the envelope. Eur J Biochem. 1974 Jan 3;41(1):203–208. doi: 10.1111/j.1432-1033.1974.tb03261.x. [DOI] [PubMed] [Google Scholar]
  10. Hughes R. C., Thurman P. F., Stokes E. Estimates of the porosity of Bacillus licheniformis and Bacillus subtilis cell walls. Z Immunitatsforsch Exp Klin Immunol. 1975 Jul;149(2-4):126–135. [PubMed] [Google Scholar]
  11. Isaac L., Ware G. C. The flexibility of bacterial cell walls. J Appl Bacteriol. 1974 Sep;37(3):335–339. doi: 10.1111/j.1365-2672.1974.tb00448.x. [DOI] [PubMed] [Google Scholar]
  12. Marquis R. E., Carstensen E. L. Electric conductivity and internal osmolality of intact bacterial cells. J Bacteriol. 1973 Mar;113(3):1198–1206. doi: 10.1128/jb.113.3.1198-1206.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SALTON M. R. The properties of lysozyme and its action on microorganisms. Bacteriol Rev. 1957 Jun;21(2):82–100. doi: 10.1128/br.21.2.82-100.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Weibel E. R. Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol. 1969;26:235–302. doi: 10.1016/s0074-7696(08)61637-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES