Abstract
The kinetics of accumulation of phospholipids into the intracytoplasmic membrane of Rhodopseudomonas sphaeroides have been examined. We have previously demonstrated that accumulation of phospholipids in the intracytoplasmic membrane is discontinuous with respect to the cell cycle. In this study we demonstrated a sevenfold increase in the rate of phospholipid incorporation into the intracytoplasmic membrane concurrent with the onset of cell division. Pulse-chase labeling studies revealed that the increase in the rate of phospholipid accumulation into the intracytoplasmic membrane results from the transfer of phospholipid from a site other than the intracytoplasmic membrane, and that the transfer of phospholipid, rather than synthesis of phospholipid, is most likely subject to cell cycle-specific regulation. The rates of synthesis of the individual phospholipid species (phosphatidylethanolamine, phosphatidyglycerol, and an unknown phospholipid) remained constant with respect to one another throughout the cell cycle. Similarly, each of these phospholipid species appeared to be transferred simultaneously to the intracytoplasmic membrane. We also present preliminary kinetic evidence which suggested that phosphatidylethanolamine may be converted to phosphatidycholine within the intracytoplasmic membrane.
Full text
PDF![1154](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bc1/217116/e01aab8e12f2/jbacter00274-0042.png)
![1155](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bc1/217116/75312911714a/jbacter00274-0043.png)
![1156](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bc1/217116/6ac7d32d002b/jbacter00274-0044.png)
![1157](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bc1/217116/c2326928407d/jbacter00274-0045.png)
![1158](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bc1/217116/f9922f5d9c57/jbacter00274-0046.png)
![1159](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bc1/217116/7521038cdf4f/jbacter00274-0047.png)
![1160](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bc1/217116/ee087233862c/jbacter00274-0048.png)
![1161](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bc1/217116/aba893e473d7/jbacter00274-0049.png)
![1162](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bc1/217116/aa430e3b3e30/jbacter00274-0050.png)
![1163](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bc1/217116/2ba834a13ab4/jbacter00274-0051.png)
![1164](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bc1/217116/ee1423fe9650/jbacter00274-0052.png)
![1165](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bc1/217116/e1523ebaf6a0/jbacter00274-0053.png)
![1166](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bc1/217116/7be7b99abb80/jbacter00274-0054.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames G. F. Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol. 1968 Mar;95(3):833–843. doi: 10.1128/jb.95.3.833-843.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BOATMAN E. S. OBSERVATIONS ON THE FINE STRUCTURE OF SPHEROPLASTS OF RHODOSPIRILLUM RUBRUM. J Cell Biol. 1964 Feb;20:297–311. doi: 10.1083/jcb.20.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bauza M. T., De Loach J. R., Aguanno J. J., Larrabee A. R. Acyl carrier protein prosthetic group exchange and phospholipid synthesis in synchronized cultures of a pantothenate auxotroph Escherichia coli. Arch Biochem Biophys. 1976 May;174(1):344–349. doi: 10.1016/0003-9861(76)90354-4. [DOI] [PubMed] [Google Scholar]
- Birrell G. B., Sistrom W. R., Griffith O. H. Lipid-protein associations in chromatophores from the photosynthetic bacterium Rhodopseudomonas sphaeroides. Biochemistry. 1978 Sep 5;17(18):3768–3773. doi: 10.1021/bi00611a015. [DOI] [PubMed] [Google Scholar]
- Churchward G. G., Holland I. B. Envelope synthesis during the cell cycle in Escherichia coli B/r. J Mol Biol. 1976 Aug 5;105(2):245–261. doi: 10.1016/0022-2836(76)90110-8. [DOI] [PubMed] [Google Scholar]
- Cohen L. K., Lueking D. R., Kaplan S. Intermembrane phospholipid transfer mediated by cell-free extracts of Rhodopseudomonas sphaeroides. J Biol Chem. 1979 Feb 10;254(3):721–728. [PubMed] [Google Scholar]
- Cutler R. G., Evans J. E. Synchronization of bacteria by a stationary-phase method. J Bacteriol. 1966 Feb;91(2):469–476. doi: 10.1128/jb.91.2.469-476.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drews G., Lampe H. H., Ladwig R. Die Entwicklung des Photosyntheseapparates in Dunkelkulturen von Rhodopseudomonas capsulata. Arch Mikrobiol. 1969;65(1):12–28. [PubMed] [Google Scholar]
- Dutt A., Dowhan W. Intracellular distribution of enzymes of phospholipid metabolism in several gram-negative bacteria. J Bacteriol. 1977 Oct;132(1):159–165. doi: 10.1128/jb.132.1.159-165.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eggens I., Valtersson C., Dallner G., Ernster L. Transfer of phospholipids between the endoplasmic reticulum and mitochondria in rat hepatocytes in vivo. Biochem Biophys Res Commun. 1979 Dec 14;91(3):709–714. doi: 10.1016/0006-291x(79)91938-7. [DOI] [PubMed] [Google Scholar]
- Esser A. F., Bartholomew R. M., Parce J. W., McConnell H. M. The physical state of membrane lipids modulates the activation of the first component of complement. J Biol Chem. 1979 Mar 25;254(6):1768–1770. [PubMed] [Google Scholar]
- Fraley R. T., Jameson D. M., Kaplan S. The use of the fluorescent probe alpha-parinaric acid to determine the physical state of the intracytoplasmic membranes of the photosynthetic bacterium, Rhodopseudomonas sphaeroides. Biochim Biophys Acta. 1978 Jul 20;511(1):52–60. doi: 10.1016/0005-2736(78)90064-0. [DOI] [PubMed] [Google Scholar]
- Fraley R. T., Lueking D. R., Kaplan S. Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides. Polypeptide insertion into growing membrane. J Biol Chem. 1978 Jan 25;253(2):458–464. [PubMed] [Google Scholar]
- Fraley R. T., Lueking D. R., Kaplan S. The relationship of intracytoplasmic membrane assembly to the cell division cycle in Rhodopseudomonas sphaeroides. J Biol Chem. 1979 Mar 25;254(6):1980–1986. [PubMed] [Google Scholar]
- Fraley R. T., Yen G. S., Lueking D. R., Kaplan S. The physical state of the intracytoplasmic membrane of Rhodopseudomonas sphaeroides and its relationship to the cell division cycle. J Biol Chem. 1979 Mar 25;254(6):1987–1991. [PubMed] [Google Scholar]
- Gerritsen W. J., Verkleij A. J., Van Deenen L. L. The lateral distribution of intramembrane particles in the erythrocyte membrane and recombinant vesicles. Biochim Biophys Acta. 1979 Jul 19;555(1):26–41. doi: 10.1016/0005-2736(79)90069-5. [DOI] [PubMed] [Google Scholar]
- Gorchein A. The separation and identification of the lipids of Rhodopseudomonas spheroides. Proc R Soc Lond B Biol Sci. 1968 Jul 2;170(1020):279–297. doi: 10.1098/rspb.1968.0039. [DOI] [PubMed] [Google Scholar]
- Hackenbrock C. R., Höchli M., Chau R. M. Calorimetric and freeze fracture analysis of lipid phase transitions and lateral translational motion of intramembrane particles in mitochondrial membranes. Biochim Biophys Acta. 1976 Dec 2;455(2):466–484. doi: 10.1016/0005-2736(76)90318-7. [DOI] [PubMed] [Google Scholar]
- Hagen P. O., Goldfine H., Williams P. J. Phospholipids of bacteria with extensive intracytoplasmic membranes. Science. 1966 Mar 25;151(3717):1543–1544. doi: 10.1126/science.151.3717.1543. [DOI] [PubMed] [Google Scholar]
- Hakenbeck R., Messer W. Oscillations in the synthesis of cell wall components in synchronized cultures of Escherichia coli. J Bacteriol. 1977 Mar;129(3):1234–1238. doi: 10.1128/jb.129.3.1234-1238.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hesketh T. R., Smith G. A., Houslay M. D., McGill K. A., Birdsall N. J., Metcalfe J. C., Warren G. B. Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin. Biochemistry. 1976 Sep 21;15(19):4145–4151. doi: 10.1021/bi00664a002. [DOI] [PubMed] [Google Scholar]
- Höchli M., Hackenbrock C. R. Fluidity in mitochondrial membranes: thermotropic lateral translational motion of intramembrane particles. Proc Natl Acad Sci U S A. 1976 May;73(5):1636–1640. doi: 10.1073/pnas.73.5.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jelsema C. L., Morré D. J. Distribution of phospholipid biosynthetic enzymes among cell components of rat liver. J Biol Chem. 1978 Nov 10;253(21):7960–7971. [PubMed] [Google Scholar]
- Jones N. C., Osborn M. J. Translocation of phospholipids between the outer and inner membranes of Salmonella typhimurium. J Biol Chem. 1977 Oct 25;252(20):7405–7412. [PubMed] [Google Scholar]
- Jost P. C., Nadakavukaren K. K., Griffith O. H. Phosphatidylcholine exchange between the boundary lipid and bilayer domains in cytochrome oxidase containing membranes. Biochemistry. 1977 Jul 12;16(14):3110–3114. doi: 10.1021/bi00633a011. [DOI] [PubMed] [Google Scholar]
- Kleemann W., McConnell H. M. Lateral phase separations in Escherichia coli membranes. Biochim Biophys Acta. 1974 Apr 29;345(2):220–230. doi: 10.1016/0005-2736(74)90260-0. [DOI] [PubMed] [Google Scholar]
- Kosakowski M. H., Kaplan S. Topology and growth of the intracytoplasmic membrane system of Rhodopseudomonas spheroides: protein, chlorophyll, and phospholipid insertion into steady-state anaerobic cells. J Bacteriol. 1974 Jun;118(3):1144–1157. doi: 10.1128/jb.118.3.1144-1157.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LASCELLES J., SZILAGYI J. F. PHOSPHOLIPID SYNTHESIS BY RHODOPSEUDOMONAS SPHEROIDES IN RELATION TO THE FORMATION OF PHOTOSYNTHETIC PIGMENTS. J Gen Microbiol. 1965 Jan;38:55–64. doi: 10.1099/00221287-38-1-55. [DOI] [PubMed] [Google Scholar]
- Lommen M. A., Takemoto J. Comparison, by freeze-fracture electron microscopy, of chromatophores, spheroplast-derived membrane vesicles, and whole cells of Rhodopseudomonas sphaeroides. J Bacteriol. 1978 Nov;136(2):730–741. doi: 10.1128/jb.136.2.730-741.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lueking D. R., Fraley R. T., Kaplan S. Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides. Fate of "old" and "new" membrane. J Biol Chem. 1978 Jan 25;253(2):451–457. [PubMed] [Google Scholar]
- Morré D. J., Kartenbeck J., Franke W. W. Membrane flow and intercoversions among endomembranes. Biochim Biophys Acta. 1979 Apr 23;559(1):71–52. doi: 10.1016/0304-4157(79)90008-x. [DOI] [PubMed] [Google Scholar]
- Nagle J. F., Scott H. L., Jr Lateral compressibility of lipid mono- and bilayers. Theory of membrane permeability. Biochim Biophys Acta. 1978 Nov 2;513(2):236–243. doi: 10.1016/0005-2736(78)90176-1. [DOI] [PubMed] [Google Scholar]
- Narindrasorasak S., Goldie A. H., Sanwal B. D. Characteristics and regulation of a phospholipid-activated malate oxidase from Escherichia coli. J Biol Chem. 1979 Mar 10;254(5):1540–1545. [PubMed] [Google Scholar]
- Nicolson G. L. Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over surface components. Biochim Biophys Acta. 1976 Apr 13;457(1):57–108. doi: 10.1016/0304-4157(76)90014-9. [DOI] [PubMed] [Google Scholar]
- Nozawa Y., Thompson G. A., Jr Studies of membrane formation in Tetrahymena pyriformis. 3. Lipid incorporation into various cellular membranes of logarithmic phase cultures. J Cell Biol. 1971 Jun;49(3):722–730. doi: 10.1083/jcb.49.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nozawa Y., Thompson G. A., Jr Studies of membrane formation in Tetrahymena pyriformis. II. Isolation and lipid analysis of cell fractions. J Cell Biol. 1971 Jun;49(3):712–721. doi: 10.1083/jcb.49.3.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nozawa Y., Thompson G. A., Jr Studies of membrane formation in Tetrahymena pyriformis. V. Lipid incorporation into various cellular membranes of stationary phase cells, starving cells, and cells treated with metabolic inhibitors. Biochim Biophys Acta. 1972 Sep 1;282(1):93–104. doi: 10.1016/0005-2736(72)90314-8. [DOI] [PubMed] [Google Scholar]
- Oki M. Correlation between metabolism of phosphatidylglycerol and membrane synthesis in Escherichia coli. J Mol Biol. 1972 Jul 21;68(2):249–264. doi: 10.1016/0022-2836(72)90212-4. [DOI] [PubMed] [Google Scholar]
- Owen J. S., McIntyre N. Erythrocyte lipid composition and sodium transport in human liver disease. Biochim Biophys Acta. 1978 Jun 16;510(1):168–176. doi: 10.1016/0005-2736(78)90138-4. [DOI] [PubMed] [Google Scholar]
- Pierucci O. Phospholipid synthesis during the cell division cycle of Escherichia coli. J Bacteriol. 1979 May;138(2):453–460. doi: 10.1128/jb.138.2.453-460.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poorthuis B. J., Yazaki P. J., Hostetler K. Y. An improved two dimensional thin-layer chromatography system for the separation of phosphatidylglycerol and its derivatives. J Lipid Res. 1976 Jul;17(4):433–437. [PubMed] [Google Scholar]
- Prince R. C., Baccarini-Melandri A., Hauska G. A., Melandri B. A., Crofts A. R. Asymmetry of an energy transducing membrane the location of cytochrome c2 in Rhodopseudomonas spheroides and Rhodopseudomonas capsulata. Biochim Biophys Acta. 1975 May 15;387(2):212–227. doi: 10.1016/0005-2728(75)90104-8. [DOI] [PubMed] [Google Scholar]
- Rothman J. E., Kennedy E. P. Asymmetrical distribution of phospholipids in the membrane of Bacillus megaterium. J Mol Biol. 1977 Mar 5;110(3):603–618. doi: 10.1016/s0022-2836(77)80114-9. [DOI] [PubMed] [Google Scholar]
- Rothman J. E., Kennedy E. P. Rapid transmembrane movement of newly synthesized phospholipids during membrane assembly. Proc Natl Acad Sci U S A. 1977 May;74(5):1821–1825. doi: 10.1073/pnas.74.5.1821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell N. J., Harwood J. L. Changes in the acyl lipid composition of photosynthetic bacteria grown under photosynthetic and non-photosynthetic conditions. Biochem J. 1979 Aug 1;181(2):339–345. doi: 10.1042/bj1810339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandra A., Pagano R. E. Phospholipid asymmetry in LM cell plasma membrane derivatives: polar head group and acyl chain distributions. Biochemistry. 1978 Jan 24;17(2):332–338. doi: 10.1021/bi00595a022. [DOI] [PubMed] [Google Scholar]
- Shimada K., Murata N. Studies on the surface structure of the intracytoplasmic membrane in the photosynthetic purple bacterium Chromatium vinosum by means of chemical modification. J Biochem. 1977 Nov;82(5):1231–1236. doi: 10.1093/oxfordjournals.jbchem.a131810. [DOI] [PubMed] [Google Scholar]
- Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
- Smith B. A., McConnell H. M. Determination of molecular motion in membranes using periodic pattern photobleaching. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2759–2763. doi: 10.1073/pnas.75.6.2759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takai Y., Kishimoto A., Iwasa Y., Kawahara Y., Mori T., Nishizuka Y. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem. 1979 May 25;254(10):3692–3695. [PubMed] [Google Scholar]
- Takemoto J., Bachmann R. C. Orientation of chromatophores and spheroplast-derived membrane vesicles of Rhodopseudomonas sphaeroides: analysis by localization of enzyme activities. Arch Biochem Biophys. 1979 Jul;195(2):526–534. doi: 10.1016/0003-9861(79)90379-5. [DOI] [PubMed] [Google Scholar]
- Tauschel H. D., Drews G. Thylakoidmorphogenese bei Rhodopseudomonas palustirs. Arch Mikrobiol. 1967;59(4):381–404. [PubMed] [Google Scholar]
- Tuttle A. L., Gest H. SUBCELLULAR PARTICULATE SYSTEMS AND THE PHOTOCHEMICAL APPARATUS OF RHODOSPIRILLUM RUBRUM. Proc Natl Acad Sci U S A. 1959 Aug;45(8):1261–1269. doi: 10.1073/pnas.45.8.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood B. J., Nichols B. W., James A. T. The lipids and fatty acid metabolism of photosynthetic bacteria. Biochim Biophys Acta. 1965 Oct 4;106(2):261–273. doi: 10.1016/0005-2760(65)90034-2. [DOI] [PubMed] [Google Scholar]
- Wraight C. A., Lueking D. R., Fraley R. T., Kaplan S. Synthesis of photopigments and electron transport components in synchronous phototrophic cultures of Rhodopseudomonas sphaeroides. J Biol Chem. 1978 Jan 25;253(2):465–471. [PubMed] [Google Scholar]