Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Mar;145(3):1359–1364. doi: 10.1128/jb.145.3.1359-1364.1981

Subcellular compartmentation in control of converging pathways for proline and arginine metabolism in Saccharomyces cerevisiae.

M C Brandriss, B Magasanik
PMCID: PMC217140  PMID: 7009582

Abstract

Enzymes of proline biosynthesis and proline degradation which act on the same compound, delta 1-pyrroline-5-carboxylate, are physically separated in yeast cells. The enzyme responsible for the final step in proline biosynthesis, pyrroline-5-carboxylate reductase, converts pyrroline-5-carboxylate to proline and is located in the cytoplasm. The last enzyme in the proline degradative pathway, pyrroline-5-carboxylate dehydrogenase, converts pyrroline-5-carboxylate to glutamate and is found in the particulate fraction of the cell, presumably in the mitochondrion. By subcellular compartmentation, yeast cells avoid futile cycling between proline and pyrroline-5-carboxylate.

Full text

PDF
1359

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandriss M. C. Isolation and preliminary characterization of Saccharomyces cerevisiae proline auxotrophs. J Bacteriol. 1979 Jun;138(3):816–822. doi: 10.1128/jb.138.3.816-822.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brandriss M. C., Magasanik B. Genetics and physiology of proline utilization in Saccharomyces cerevisiae: enzyme induction by proline. J Bacteriol. 1979 Nov;140(2):498–503. doi: 10.1128/jb.140.2.498-503.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brandriss M. C., Magasanik B. Proline: an essential intermediate in arginine degradation in Saccharomyces cerevisiae. J Bacteriol. 1980 Sep;143(3):1403–1410. doi: 10.1128/jb.143.3.1403-1410.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clifton D., Weinstock S. B., Fraenkel D. G. Glycolysis mutants in Saccharomyces cerevisiae. Genetics. 1978 Jan;88(1):1–11. doi: 10.1093/genetics/88.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davis R. H. Compartmentation and regulation of fungal metabolism: genetic approaches. Annu Rev Genet. 1975;9:39–65. doi: 10.1146/annurev.ge.09.120175.000351. [DOI] [PubMed] [Google Scholar]
  6. JOHNSON A. B., STRECKER H. J. The interconversion of glutamic acid and proline. IV. The oxidation of proline by rat liver mitochondria. J Biol Chem. 1962 Jun;237:1876–1882. [PubMed] [Google Scholar]
  7. Jauniaux J. C., Urrestarazu L. A., Wiame J. M. Arginine metabolism in Saccharomyces cerevisiae: subcellular localization of the enzymes. J Bacteriol. 1978 Mar;133(3):1096–1107. doi: 10.1128/jb.133.3.1096-1107.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MIDDELHOVEN W. J. THE PATHWAY OF ARGININE BREAKDOWN IN SACCHAROMYCES CEREVISIAE. Biochim Biophys Acta. 1964 Dec 9;93:650–652. doi: 10.1016/0304-4165(64)90349-6. [DOI] [PubMed] [Google Scholar]
  9. Ryan E. D., Kohlhaw G. B. Subcellular localization of isoleucine-valine biosynthetic enzymes in yeast. J Bacteriol. 1974 Nov;120(2):631–637. doi: 10.1128/jb.120.2.631-637.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ryan E. D., Tracy J. W., Kohlhaw G. B. Subcellular localization of the leucine biosynthetic enzymes in yeast. J Bacteriol. 1973 Oct;116(1):222–225. doi: 10.1128/jb.116.1.222-225.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Scarpulla R. C., Soffer R. L. Membrane-bound proline dehydrogenase from Escherichia coli. Solubilization, purification, and characterization. J Biol Chem. 1978 Sep 10;253(17):5997–6001. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES