Abstract
The effect of tris(hydroxymethyl)aminomethane (Tris) buffer on outer membrane permeability was examined in a smooth strain (D280) and in a heptose-deficient lipopolysaccharide strain (F515) of Escherichia coli O8. Tris buffer (pH 8.00) was found to increase outer membrane permeability on the basis of an increased Vo of whole-cell alkaline phosphatase activity and on the basis of sensitivity to lysozyme and altered localization pattern of alkaline phosphatase. The Tris buffer-mediated increase in outer membrane permeability was found to be dependent upon the extent of exposure to and concentration of the Tris buffer. The Tris buffer effects were demonstrated not to be due to allosteric activation of cell-associated alkaline phosphatase and were specific for Tris buffer. Exposure of cells to Tris resulted in the release of a limited amount of cell envelope component. Investigators utilizing Tris buffer are cautioned that Tris is not physiologically inert and that it may interact with the system under investigation.
Full text
PDF![1397](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/580a/217144/c00d238a2d5d/jbacter00274-0285.png)
![1398](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/580a/217144/c7c1f1ec9944/jbacter00274-0286.png)
![1399](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/580a/217144/e9d6dfea4a3d/jbacter00274-0287.png)
![1400](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/580a/217144/63b986df716c/jbacter00274-0288.png)
![1401](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/580a/217144/fd5fd00870e4/jbacter00274-0289.png)
![1402](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/580a/217144/b3fd63f6d82e/jbacter00274-0290.png)
![1403](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/580a/217144/91ac889019cc/jbacter00274-0291.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beacham I. R., Haas D., Yagil E. Mutants of Escherichia coli "cryptic" for certain periplasmic enzymes: evidence for an alteration of the outer membrane. J Bacteriol. 1977 Feb;129(2):1034–1044. doi: 10.1128/jb.129.2.1034-1044.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GAREN A., LEVINTHAL C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta. 1960 Mar 11;38:470–483. doi: 10.1016/0006-3002(60)91282-8. [DOI] [PubMed] [Google Scholar]
- Irvin R. T., MacAlister T. J., Chan R., Costerton J. W. Citrate-tris(hydroxymethyl)aminomethane-mediated release of outer membrane sections from the cell envelope of a deep-rough (heptose-deficient lipopolysaccharide) strain of Escherichia coli O8. J Bacteriol. 1981 Mar;145(3):1386–1396. doi: 10.1128/jb.145.3.1386-1396.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lindsay S. S., Wheeler B., Sanderson K. E., Costerton J. W., Cheng K. J. The release of alkaline phosphatase and of lipopolysaccharide during the growth of rough and smooth strains of Salmonella typhimurium. Can J Microbiol. 1973 Mar;19(3):335–343. doi: 10.1139/m73-056. [DOI] [PubMed] [Google Scholar]
- MacAlister T. J., Irvin R. T., Costerton J. W. Cell envelope protection of alkaline phosphatase against acid denaturation in Escherichia coli. J Bacteriol. 1977 Apr;130(1):339–346. doi: 10.1128/jb.130.1.339-346.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacAlister T. J., Irvin R. T., Costerton J. W. Immunocytological investigation of protein synthesis in Escherichia coli. J Bacteriol. 1977 Apr;130(1):329–338. doi: 10.1128/jb.130.1.329-338.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacaAlister T. J., Irvin R. T., Costerton J. W. Cell surface-localized alkaline phosphatase of Escherichia coli as visualized by reaction product deposition and ferritin-labeled antibodies. J Bacteriol. 1977 Apr;130(1):318–328. doi: 10.1128/jb.130.1.318-328.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moustafa Hassan H. Diminution of outer membrane permeability by Mg2+ in a marine pseudomonad. J Bacteriol. 1976 Mar;125(3):910–915. doi: 10.1128/jb.125.3.910-915.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson A. C., Schmidt G., Jann K. Biochemistry of the K antigens of Escherichia coli. Formation of the nucleoside diphosphate sugar precursors of the K27 antigen of E. coli 08:K27(A):H-. Eur J Biochem. 1969 Dec;11(2):376–385. doi: 10.1111/j.1432-1033.1969.tb00783.x. [DOI] [PubMed] [Google Scholar]
- Overath P., Brenner M., Gulik-Krzywicki T., Shechter E., Letellier L. Lipid phase transitions in cytoplasmic and outer membranes of Escherichia coli. Biochim Biophys Acta. 1975 May 6;389(2):358–369. doi: 10.1016/0005-2736(75)90328-4. [DOI] [PubMed] [Google Scholar]
- Schindler P. R., Teuber M. Ultrastructural study of Salmonella typhimurium treated with membrane-active agents: specific reaction dansylchloride with cell envelope components. J Bacteriol. 1978 Jul;135(1):198–206. doi: 10.1128/jb.135.1.198-206.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlesinger M. J., Barrett K. The reversible dissociation of the alkaline phosphatase of Escherichia coli. I. Formation and reactivation of subunits. J Biol Chem. 1965 Nov;240(11):4284–4292. [PubMed] [Google Scholar]
- Schmidt G., Jann B., Jann K. Immunochemistry of R lipopolysaccharides of Escherichia coli. Studies on R mutants with an incomplete core, derived from E. coli O8:K27. Eur J Biochem. 1970 Oct;16(2):382–392. doi: 10.1111/j.1432-1033.1970.tb01092.x. [DOI] [PubMed] [Google Scholar]
- Thompson L. M., MacLeod R. A. Biochemical localization of alkaline phosphatase in the cell wall of a marine pseudomonad. J Bacteriol. 1974 Feb;117(2):819–825. doi: 10.1128/jb.117.2.819-825.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voss J. G. Effects of organic cations on the gram-negative cell wall and their bactericidal activity with ethylenediaminetetra-acetate and surface active agents. J Gen Microbiol. 1967 Sep;48(3):391–400. doi: 10.1099/00221287-48-3-391. [DOI] [PubMed] [Google Scholar]
- WEISSBACH A., HURWITZ J. The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. Identification. J Biol Chem. 1959 Apr;234(4):705–709. [PubMed] [Google Scholar]