Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Feb;145(2):832–839. doi: 10.1128/jb.145.2.832-839.1981

Inactivation of transforming Bacillus subtilis deoxyribonucleic acid by monoadducts of 4,5',8-trimethylpsoralen.

H P te Riele, P van Sluis, G Venema
PMCID: PMC217186  PMID: 6780532

Abstract

4,5',8-Trimethylpsoralen (TMP) monoadducts inactive transforming deoxyribonucleic acid (DNA) in Bacillus subtilis. Contrary to TMP diadducts (TMP cross-links), which severely inhibit entry of donor DNA (G. Venema and U. Canosi, Mol. Gen. Genet. 179:1--11), TMP monoadducts have only a slight effect on entry. Since reextracted TMP-monoadduct-containing transforming DNA is a differentially repaired by Uvr- and Uvr+ recipients and cross-linkable to the recipient strand in the heteroduplex recombinant DNA molecules, the monoadducts can be integrated along with the donor DNA into the recipient chromosome.

Full text

PDF
832

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arwert F., Venema G. Transfection of Bacillus subtilis with bacteriophage H1 DNA: fate of transfecting DNA and transfection enhancement in B. subtilis uur+ and uur- strains. Mol Gen Genet. 1974;128(1):55–72. doi: 10.1007/BF00267294. [DOI] [PubMed] [Google Scholar]
  2. Bodmer W. F. Integration of deoxyribonuclease-treated DNA in bacillus subtilis transformation. J Gen Physiol. 1966 Jul;49(6):233–258. doi: 10.1085/jgp.49.6.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bron S., Venema G. Ultraviolet inactivation and excision-repair in Bacillus subtilis. I. Construction and characterization of a transformable eightfold auxotrophic strain and two ultraviolet-sensitive derivatives. Mutat Res. 1972 May;15(1):1–10. doi: 10.1016/0027-5107(72)90086-3. [DOI] [PubMed] [Google Scholar]
  4. Bron S., Venema G. Ultraviolet inactivation and excision-repair in Bacillus subtilis. II. Differential inactivation and differential repair of transforming markers. Mutat Res. 1972 May;15(1):11–22. doi: 10.1016/0027-5107(72)90087-5. [DOI] [PubMed] [Google Scholar]
  5. Bron S., Venema G. Ultraviolet inactivation and excision-repair in Bacillus subtilis. IV. Integration and repair of ultraviolet-inactivated transforming DNA. Mutat Res. 1972 Aug;15(4):395–409. doi: 10.1016/0027-5107(72)90004-8. [DOI] [PubMed] [Google Scholar]
  6. Chatterjee P. K., Cantor C. R. Photochemical production of psoralen - DNA monoadducts capable of subsequent photocrosslinking. Nucleic Acids Res. 1978 Oct;5(10):3619–3633. doi: 10.1093/nar/5.10.3619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cole R. S. Inactivation of Escherichia coli, F' episomes at transfer, and bacteriophage lambda by psoralen plus 360-nm light: significance of deoxyribonucleic acid cross-links. J Bacteriol. 1971 Sep;107(3):846–852. doi: 10.1128/jb.107.3.846-852.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cole R. S., Levitan D., Sinden R. R. Removal of psoralen interstrand cross-links from DNA of Escherichia coli: mechanism and genetic control. J Mol Biol. 1976 May 5;103(1):39–59. doi: 10.1016/0022-2836(76)90051-6. [DOI] [PubMed] [Google Scholar]
  9. Cole R. S. Light-induced cross-linking of DNA in the presence of a furocoumarin (psoralen). Studies with phage lambda, Escherichia coli, and mouse leukemia cells. Biochim Biophys Acta. 1970 Sep 17;217(1):30–39. doi: 10.1016/0005-2787(70)90119-x. [DOI] [PubMed] [Google Scholar]
  10. Cole R. S. Psoralen monoadducts and interstrand cross-links in DNA. Biochim Biophys Acta. 1971 Nov 29;254(1):30–39. doi: 10.1016/0005-2787(71)90111-0. [DOI] [PubMed] [Google Scholar]
  11. Dall'Acqua F., Marciani S., Ciavatta L., Rodighiero G. Formation of inter-strand cross-linkings in the photoreactions between furocoumarins and DNA. Z Naturforsch B. 1971 Jun;26(6):561–569. doi: 10.1515/znb-1971-0613. [DOI] [PubMed] [Google Scholar]
  12. Davidoff-Abelson R., Dubnau D. Conditions affecting the isolation from transformed cells of Bacillus subtilis of high-molecular-weight single-stranded deoxyribonucleic acid of donor origin. J Bacteriol. 1973 Oct;116(1):146–153. doi: 10.1128/jb.116.1.146-153.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dubnau D., Cirigliano C. Fate of transforming deoxyribonucleic acid after uptake by competent Bacillus subtilis: size and distribution of the integrated donor segments. J Bacteriol. 1972 Aug;111(2):488–494. doi: 10.1128/jb.111.2.488-494.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fornili S. L., Fox M. S. Electron microscope visualization of the products of Bacillus subtilis transformation. J Mol Biol. 1977 Jun 15;113(1):181–191. doi: 10.1016/0022-2836(77)90048-1. [DOI] [PubMed] [Google Scholar]
  15. Joenje H., Konings W. N., Venema G. Interactions between exogenous deoxyribonucleic acid and membrane vesicles isolated from competent and noncompetent Bacillus subtilis. J Bacteriol. 1975 Mar;121(3):771–776. doi: 10.1128/jb.121.3.771-776.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Krauch C. H., Krämer D. M., Wacker A. Zum Wirkungsmechanismus photodynamischer Furocumarine Photoreaktion von Psoralen-(4-14C) mit DNS, RNS, Homopolynucleotiden und Nucleosiden. Photochem Photobiol. 1967 May;6(5):341–354. doi: 10.1111/j.1751-1097.1967.tb08882.x. [DOI] [PubMed] [Google Scholar]
  17. Musajo L., Bordin F., Caporale G., Marciani S., Rigatti G. Photoreactions at 3655 Angstrom between pyrimidine bases and skin-photosensitizing furocoumarins. Photochem Photobiol. 1967 Oct;6(10):711–719. doi: 10.1111/j.1751-1097.1967.tb08736.x. [DOI] [PubMed] [Google Scholar]
  18. Piechowska M., Fox M. S. Fate of transforming deoxyribonucleate in Bacillus subtilis. J Bacteriol. 1971 Nov;108(2):680–689. doi: 10.1128/jb.108.2.680-689.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Scott B. R., Pathak M. A., Mohn G. R. Molecular and genetic basis of furocoumarin reactions. Mutat Res. 1976;39(1):29–74. doi: 10.1016/0165-1110(76)90012-9. [DOI] [PubMed] [Google Scholar]
  20. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. VENEMA G., PRITCHARD R. H., VENEMA-SCHROEDER T. FATE OF TRANSFORMING DEOXYRIBONUCLEIC ACID IN BACILLUS SUBTILIS. J Bacteriol. 1965 May;89:1250–1255. doi: 10.1128/jb.89.5.1250-1255.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Venema G., Canosi U. The effect of trimethylpsoralen--crosslinks on entry of donor DNA in transformation and transfection of Bacillus subtilis. Mol Gen Genet. 1980;179(1):1–11. doi: 10.1007/BF00268439. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES