Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Feb;145(2):926–933. doi: 10.1128/jb.145.2.926-933.1981

Effect of cobalt on synthesis and activation of Bacillus licheniformis alkaline phosphatase.

D B Spencer, C P Chen, F M Hulett
PMCID: PMC217200  PMID: 7462163

Abstract

The effect of CO2+ on the synthesis and activation of Bacillus licheniformis MC14 alkaline phosphatase has been shown by the development of a defined minimal salts medium in which this organism produces 35 times more (assayable) alkaline phosphatase than when grown in a low-phosphate complex medium or in the defined medium without cobalt. Stimulation of enzyme activity with cobalt is dependent on a low phosphate concentration in the medium (below 0.075 mM) and continued protein synthesis. Cobalt stimulation resulted in alkaline phosphate production being a major portion of total protein synthesized during late-logarithmic and early-stationary-phase culture growth. Cells cultured in the defined medium minus cobalt, or purified enzyme partially inactivated with a chelating agent, showed a 2.5-fold increase in activity when assayed in the presence of cobalt. Atomic spectral analysis indicated the presence of 3.65 +/- 0.45 g-atoms of cobalt associated with each mole of purified active alkaline phosphatase. A biochemical localization as a function of culture age in this medium showed that alkaline phosphatase was associated with the cytoplasmic membrane and was also found as a soluble enzyme in the periplasmic region and secreted into the growth medium.

Full text

PDF
926

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aono H., Otsuji N. Genetic mapping of regulator gene phoS for alkaline phosphatase in Escherichia coli. J Bacteriol. 1968 Mar;95(3):1182–1183. doi: 10.1128/jb.95.3.1182-1183.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bracha M., Yagil E. Genetic mapping of the phoR regulator gene of alkaline phosphatase in Escherichia coli. J Gen Microbiol. 1969 Nov;59(1):77–81. doi: 10.1099/00221287-59-1-77. [DOI] [PubMed] [Google Scholar]
  3. GAREN A., ECHOLS H. Genetic control of induction of alkaline phosphatase synthesis in E. coli. Proc Natl Acad Sci U S A. 1962 Aug;48:1398–1402. doi: 10.1073/pnas.48.8.1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GAREN A., ECHOLS H. Properties of two regulating genes for alkaline phosphatase. J Bacteriol. 1962 Feb;83:297–300. doi: 10.1128/jb.83.2.297-300.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ghosh R., Ghosh A., Ghosh B. K. Properties of the membrane-bound alkaline phosphatase from glucose- and lactate-grown cells of Bacillus subtilis SB 15. J Biol Chem. 1977 Oct 10;252(19):6813–6822. [PubMed] [Google Scholar]
  6. Glynn J. A., Schaffel S. D., McNicholas J. M., Hulett F. M. Biochemical localization of the alkaline phosphatase of Bacillus licheniformis as a function of culture age. J Bacteriol. 1977 Feb;129(2):1010–1019. doi: 10.1128/jb.129.2.1010-1019.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hulett-Cowling F. M., Campbell L. L. Molecular weight and subunits of the alkaline phosphatase of Bacillus licheniformis. Biochemistry. 1971 Apr 13;10(8):1371–1376. doi: 10.1021/bi00784a015. [DOI] [PubMed] [Google Scholar]
  8. Hulett-Cowling F. M., Campbell L. L. Purification and properties of an alkaline phosphatase of Bacillus licheniformis. Biochemistry. 1971 Apr 13;10(8):1364–1371. doi: 10.1021/bi00784a014. [DOI] [PubMed] [Google Scholar]
  9. Hydrean C., Ghosh A., Nallin M., Ghosh B. K. Interrelationship of carbohydrate metabolism and alkaline phosphatase synthesis in Bacillus licheniformis 749/c. J Biol Chem. 1977 Oct 10;252(19):6806–6812. [PubMed] [Google Scholar]
  10. Lazdunski C., Petitclerc C., Lazdunski M. Structure-function relationships for some metalloalkaline phosphatases of E. coli. Eur J Biochem. 1969 Apr;8(4):510–517. doi: 10.1111/j.1432-1033.1969.tb00556.x. [DOI] [PubMed] [Google Scholar]
  11. McNicholas J. M., Hulett F. M. Electron microscope histochemical localization of alkaline phosphatase(s) in Bacillus licheniformis. J Bacteriol. 1977 Jan;129(1):501–515. doi: 10.1128/jb.129.1.501-515.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miki T., Minami Z., Ikeda Y. The genetics of alkaline phosphatase formation in Bacillus subtilis. Genetics. 1965 Nov;52(5):1093–1100. doi: 10.1093/genetics/52.5.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Morris H., Schlesinger M. J., Bracha M., Yagil E. Pleiotropic effects of mutations involved in the regulation of Escherichia coli K-12 alkaline phosphatase. J Bacteriol. 1974 Aug;119(2):583–592. doi: 10.1128/jb.119.2.583-592.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nakon R. Free metal ion depletion by "Good's" buffers. I. N-(2-acetamido)iminodiacetic acid 1:1 complexes with calcium(ii). magnesium(II), zinc(II), manganese(II), cobalt(II), nickel(II), and copper(II). Anal Biochem. 1979 Jun;95(2):527–532. doi: 10.1016/0003-2697(79)90767-x. [DOI] [PubMed] [Google Scholar]
  15. Norne J. E., Csopak H., Lindman B. 35Cl nuclear magnetic resonance study of zinc and phosphate binding of E. coli alkaline phosphatase. Arch Biochem Biophys. 1974 Jun;162(2):552–559. doi: 10.1016/0003-9861(74)90215-x. [DOI] [PubMed] [Google Scholar]
  16. Norne J. E., Szajn H., Csopak H., Reimarsson P., Lindman B. The relation between activity and zinc and chloride binding of Escherichia coli alkaline phosphatase. Arch Biochem Biophys. 1979 Sep;196(2):552–556. doi: 10.1016/0003-9861(79)90307-2. [DOI] [PubMed] [Google Scholar]
  17. Piggot P. J., Sklar M. D., Gorini L. Ribosomal alterations controlling alkaline phosphatase isozymes in Escherichia coli. J Bacteriol. 1972 Apr;110(1):291–299. doi: 10.1128/jb.110.1.291-299.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Strickland J. E., Miller O. N. Inhibition of glycerol dehydrogenase from Aerobacter aerogenes by dihydroxyacetone, high ionic strength, and monovalent cations. Biochim Biophys Acta. 1968 Jun 4;159(2):221–225. doi: 10.1016/0005-2744(68)90070-3. [DOI] [PubMed] [Google Scholar]
  19. Szajn H., Csopak H. Metal ion-induced conformational changes in Escherichia coli alkaline phosphatase. Biochim Biophys Acta. 1977 Jan 11;480(1):143–153. doi: 10.1016/0005-2744(77)90329-1. [DOI] [PubMed] [Google Scholar]
  20. TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
  21. Wilkins A. S. Physiological factors in the regulation of alkaline phosphatase synthesis in Escherichia coli. J Bacteriol. 1972 May;110(2):616–623. doi: 10.1128/jb.110.2.616-623.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Willsky G. R., Bennett R. L., Malamy M. H. Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J Bacteriol. 1973 Feb;113(2):529–539. doi: 10.1128/jb.113.2.529-539.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yoshizumi F. K., Coleman J. E. Metalloalkaline phosphatases from Bacillus subtilis: physicochemical and enzymatic properties. Arch Biochem Biophys. 1974 Jan;160(1):255–268. doi: 10.1016/s0003-9861(74)80032-9. [DOI] [PubMed] [Google Scholar]
  24. Zukin R. S., Hollis D. P. Role of metal ions in Escherichia coli alkaline phosphatase. A study of the metal-water interaction by nuclear relaxation rate measurements on water protons. J Biol Chem. 1975 Feb 10;250(3):835–842. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES