Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Feb;145(2):966–973. doi: 10.1128/jb.145.2.966-973.1981

Comparative bioenergetics of sulfate reduction in Desulfovibrio and Desulfotomaculum spp.

C L Liu, H D Peck Jr
PMCID: PMC217205  PMID: 6109714

Abstract

Extracts of Desulfotomaculum nigrificans, Desulfotomaculum orientis, and Desulfotomaculum ruminis exhibit low levels of inorganic pyrophosphatase but were found to have high levels of pyrophosphate:acetate phosphotransferase. Conversely, extracts of Desulfovibrio gigas, Desulfovibrio vulgaris, and Desulfovibrio desulfuricans Norway 4 were shown to have high levels of inorganic pyrophosphatase but negligible amounts of pyrophosphate:acetate phosphotransferase. Both enzymes are reductant activated and appear to have an analogous function in removing pyrophosphate formed during the activation of sulfate. Conservation of the bond energy of pyrophosphate in Desulfotomaculum eliminates the necessity for invoking electron-transfer-coupled phosphorylation to account for the growth of these bacteria on lactate plus sulfate. Relative growth yields of Desulfovibrio vulgaris and Desulfotomaculum orientis on lactate plus sulfate indicate that the latter does not carry out significant electron-transfer-coupled phosphorylation in this mode of growth.

Full text

PDF
966

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADAMS M. E., POSTGATE J. R. A new sulphate-reducing vibrio. J Gen Microbiol. 1959 Apr;20(2):252–257. doi: 10.1099/00221287-20-2-252. [DOI] [PubMed] [Google Scholar]
  2. AKAGI J. M., CAMPBELL L. L. INORGANIC PYROPHOSPHATASE OF DESULFOVIBRIO DESULFURICANS. J Bacteriol. 1963 Sep;86:563–568. doi: 10.1128/jb.86.3.563-568.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. AKAGI J. M., CAMPBELL L. L. Studies on thermophilic sulfate-reducing bacteria. II. Hydrogenase activity of Clostridium nigrificans. J Bacteriol. 1961 Dec;82:927–932. doi: 10.1128/jb.82.6.927-932.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BULLER C. S., AKAGI J. M. HYDROGENASE OF COLEMAN'S SULFATE-REDUCING BACTERIUM. J Bacteriol. 1964 Aug;88:440–443. doi: 10.1128/jb.88.2.440-443.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Badziong W., Thauer R. K. Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Arch Microbiol. 1978 May 30;117(2):209–214. doi: 10.1007/BF00402310. [DOI] [PubMed] [Google Scholar]
  6. Bell G. R., LeGall L., Peck H. D. Evidence for the periplasmic location of hydrogenase in Desulfovibrio gigas. J Bacteriol. 1974 Nov;120(2):994–997. doi: 10.1128/jb.120.2.994-997.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bell G. R., Lee J. P., Peck H. D., Jr, Gall J. L. Reactivity of Desulfovibrio gigas hydrogenase toward artificial and natural electron donors or acceptors. Biochimie. 1978;60(3):315–320. doi: 10.1016/s0300-9084(78)80828-1. [DOI] [PubMed] [Google Scholar]
  8. Bramlett R. N., Peck H. D., Jr Some physical and kinetic properties of adenylyl sulfate reductase from Desulfovibrio vulgaris. J Biol Chem. 1975 Apr 25;250(8):2979–2986. [PubMed] [Google Scholar]
  9. Brown M. S., Akagi J. M. Purification of acetokinase from Desulfovibrio desulfuricans. J Bacteriol. 1966 Oct;92(4):1273–1274. doi: 10.1128/jb.92.4.1273-1274.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bryant M. P., Campbell L. L., Reddy C. A., Crabill M. R. Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol. 1977 May;33(5):1162–1169. doi: 10.1128/aem.33.5.1162-1169.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. COLEMAN G. S. A sulphate-reducing bacterium from the sheep rumen. J Gen Microbiol. 1960 Apr;22:423–436. doi: 10.1099/00221287-22-2-423. [DOI] [PubMed] [Google Scholar]
  12. Campbell L. L., Postgate J. R. Classification of the spore-forming sulfate-reducing bacteria. Bacteriol Rev. 1965 Sep;29(3):359–363. doi: 10.1128/br.29.3.359-363.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fauque G., Herve D., Le Gall J. Structure-function relationship in hemoproteins: the role of cytochrome c3 in the reduction of colloidal sulfur by sulfate-reducing bacteria. Arch Microbiol. 1979 Jun;121(3):261–264. doi: 10.1007/BF00425065. [DOI] [PubMed] [Google Scholar]
  14. Guynn R. W., Webster L. T., Jr, Veech R. L. Equilibrium constants of the reactions of acetyl coenzyme A synthetase and the hydrolysis of adenosine triphosphate to adenosine monophosphate and inorganic pyrophosphate. J Biol Chem. 1974 May 25;249(10):3248–3254. [PubMed] [Google Scholar]
  15. LEGALL J., MAZZA G., DRAGONI N. LE CYTOCHROME C3 DE DESULFOVIBRIO GIGAS. Biochim Biophys Acta. 1965 May 18;99:385–387. [PubMed] [Google Scholar]
  16. LEVIN R., BRAUER R. W. The biuret reaction for the determination of proteins; an improved reagent and its application. J Lab Clin Med. 1951 Sep;38(3):474–480. [PubMed] [Google Scholar]
  17. Lee J. P., LeGall J., Peck H. D., Jr Isolation of assimilatroy- and dissimilatory-type sulfite reductases from Desulfovibrio vulgaris. J Bacteriol. 1973 Aug;115(2):529–542. doi: 10.1128/jb.115.2.529-542.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MILLER J. D., SALEH A. M. A SULPHATE-REDUCING BACTERIUM CONTAINING CYTOCHROME C3 BUT LACKING DESULFOVIRIDIN. J Gen Microbiol. 1964 Dec;37:419–423. doi: 10.1099/00221287-37-3-419. [DOI] [PubMed] [Google Scholar]
  19. PECK H. D., Jr Evidence for oxidative phosphorylation during the reduction of sulfate with hydrogen by Desulfovibrio desulfuricans. J Biol Chem. 1960 Sep;235:2734–2738. [PubMed] [Google Scholar]
  20. PECK H. D., Jr Symposium on metabolism of inorganic compounds. V. Comparative metabolism of inorganic sulfur compounds in microorganisms. Bacteriol Rev. 1962 Mar;26:67–94. doi: 10.1128/br.26.1.67-94.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. POSTGATE J. R. Cytochrome c3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans. J Gen Microbiol. 1956 Jul;14(3):545–572. doi: 10.1099/00221287-14-3-545. [DOI] [PubMed] [Google Scholar]
  22. POSTGATE J. A diagnostic reaction of Desulphovibrio desulphuricans. Nature. 1959 Feb 14;183(4659):481–482. doi: 10.1038/183481b0. [DOI] [PubMed] [Google Scholar]
  23. Peck H. D., Jr Phosphorylation coupled with electron transfer in extracts of the sulfate reducing bacterium, Desulfovibrio gigas. Biochem Biophys Res Commun. 1966 Jan 4;22(1):112–118. doi: 10.1016/0006-291x(66)90611-5. [DOI] [PubMed] [Google Scholar]
  24. Peck H. D. THE ATP-DEPENDENT REDUCTION OF SULFATE WITH HYDROGEN IN EXTRACTS OF DESULFOVIBRIO DESULFURICANS. Proc Natl Acad Sci U S A. 1959 May;45(5):701–708. doi: 10.1073/pnas.45.5.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Postgate J. R., Campbell L. L. Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol Rev. 1966 Dec;30(4):732–738. doi: 10.1128/br.30.4.732-738.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reeves R. E., Guthrie J. D. Acetate kinase (pyrophosphate). A fourth pyrophosphate-dependent kinase from Entamoeba histolytica. Biochem Biophys Res Commun. 1975 Oct 27;66(4):1389–1395. doi: 10.1016/0006-291x(75)90513-6. [DOI] [PubMed] [Google Scholar]
  27. SADANA J. C., JAGANNATHAN V. Purification and properties of the hydrogenase of Desulfovibrio desulfuricans. Biochim Biophys Acta. 1956 Mar;19(3):440–452. doi: 10.1016/0006-3002(56)90467-x. [DOI] [PubMed] [Google Scholar]
  28. SIEGEL L. M. A DIRECT MICRODETERMINATION FOR SULFIDE. Anal Biochem. 1965 Apr;11:126–132. doi: 10.1016/0003-2697(65)90051-5. [DOI] [PubMed] [Google Scholar]
  29. Skyring G. W., Trudinger P. A. A comparison of the electrophoretic properties of the ATP-sulfurylases, APS-reductases, and sulfite reductases from cultures of dissimilatory sulfate-reducing bacteria. Can J Microbiol. 1973 Mar;19(3):375–380. doi: 10.1139/m73-061. [DOI] [PubMed] [Google Scholar]
  30. Trudinger P. A. Carbon monoxide-reacting pigment from Desulfotomaculum nigrificans and its possible relevance to sulfite reduction. J Bacteriol. 1970 Oct;104(1):158–170. doi: 10.1128/jb.104.1.158-170.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. WILSON L. G., BANDURSKI R. S. Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate. J Biol Chem. 1958 Oct;233(4):975–981. [PubMed] [Google Scholar]
  32. Ware D. A., Postgate J. R. Physiological and chemical properties of a reductant-activated inorganic pyrophosphatase from Desulfovibrio desulfuricans. J Gen Microbiol. 1971 Aug;67(2):145–160. doi: 10.1099/00221287-67-2-145. [DOI] [PubMed] [Google Scholar]
  33. Widdel F., Pfennig N. A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol. 1977 Feb 4;112(1):119–122. doi: 10.1007/BF00446665. [DOI] [PubMed] [Google Scholar]
  34. Wood H. G., O'brien W. E., Micheales G. Properties of carboxytransphosphorylase; pyruvate, phosphate dikinase; pyrophosphate-phosphofructikinase and pyrophosphate-acetate kinase and their roles in the metabolism of inorganic pyrophosphate. Adv Enzymol Relat Areas Mol Biol. 1977;45:85–155. doi: 10.1002/9780470122907.ch2. [DOI] [PubMed] [Google Scholar]
  35. Wood P. M. A chemiosmotic model for sulphate respiration. FEBS Lett. 1978 Nov 1;95(1):12–18. doi: 10.1016/0014-5793(78)80042-8. [DOI] [PubMed] [Google Scholar]
  36. Yagi T., Kimura K., Daidoji H., Sakai F., Tamura S. Properties of purified hydrogenase from the particulate fraction of Desulfovibrio vulgaris, Miyazaki. J Biochem. 1976 Mar;79(3):661–671. doi: 10.1093/oxfordjournals.jbchem.a131111. [DOI] [PubMed] [Google Scholar]
  37. van der Westen H. M., Mayhew S. G., Veeger C. Separation of hydrogenase from intact cells of Desulfovibrio vulgaris. Purification and properties. FEBS Lett. 1978 Feb 1;86(1):122–126. doi: 10.1016/0014-5793(78)80112-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES