Abstract
L-[4,5-3H]- or L-[U-14C]leucine was incorporated by Bacteroides thetaiotaomicron into acid-precipitable material even when the bacteria were treated with concentrations of tetracycline high enough to prevent growth. Similar results were obtained when L-[2,3,4-3H]valine or L-[4,5-3H]isoleucine was used instead of leucine. In bacteria which had been treated with tetracycline, the acid-precipitable label was not solubilized by treatment with protease, lysozyme, or deoxyribonuclease. However, virtually all of the label was extractable with chloroform-methanol, indicating that the label had been incorporated into membrane lipids. Since L-[1-14C]leucine was not incorporated into lipids, leucine was probably decarboxylated before incorporation. When a chloroform extract from bacteria which had been labeled with both [32P]phosphate and [3H]leucine was resolved into component phospholipids by two-dimensional thin-layer chromatography, 3H was incorporated into all of the phospholipids. When these phospholipids were deacylated, the 3H from leucine was associated with released fatty acids rather than with the head groups. Thus, it appears that B. thetaiotaomicron can utilize leucine and similar amino acids not only by incorporating them into protein but also by incorporating portions of these amino acids into membrane phospholipids.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames G. F. Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol. 1968 Mar;95(3):833–843. doi: 10.1128/jb.95.3.833-843.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glass T. L., Holmes W. M., Hylemon P. B., Stellwag E. J. Synthesis of guanosine tetra- and pentaphosphates by the obligately anaerobic bacterium Bacteroides thetaiotaomicron in response to molecular oxygen. J Bacteriol. 1979 Feb;137(2):956–962. doi: 10.1128/jb.137.2.956-962.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KANEDA T. Valine as a source of the branched short chain precursor in the biosynthesis if iso-C14, iso-C15, iso-C16 and iso-C17 fatty acids by Bacillus subtitlis. Biochem Biophys Res Commun. 1963 Feb 6;10:283–287. doi: 10.1016/0006-291x(63)90431-5. [DOI] [PubMed] [Google Scholar]
- KUNITZ M. Crystalline desoxyribonuclease; isolation and general properties; spectrophotometric method for the measurement of desoxyribonuclease activity. J Gen Physiol. 1950 Mar;33(4):349–362. doi: 10.1085/jgp.33.4.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kafkewitz D., Iannotti E. L., Wolin M. J., Bryant M. P. An anaerobic chemostat that permits the collection and measurement of fermentation gases. Appl Microbiol. 1973 Apr;25(4):612–614. doi: 10.1128/am.25.4.612-614.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore W. E., Holdeman L. V. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol. 1974 May;27(5):961–979. doi: 10.1128/am.27.5.961-979.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poorthuis B. J., Yazaki P. J., Hostetler K. Y. An improved two dimensional thin-layer chromatography system for the separation of phosphatidylglycerol and its derivatives. J Lipid Res. 1976 Jul;17(4):433–437. [PubMed] [Google Scholar]
- SHUGAR D. The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme. Biochim Biophys Acta. 1952 Mar;8(3):302–309. doi: 10.1016/0006-3002(52)90045-0. [DOI] [PubMed] [Google Scholar]
- Stoffel W., Dittmar K., Wilmes R. Sphingolipid metabolism in Bacteroideaceae. Hoppe Seylers Z Physiol Chem. 1975 Jun;356(6):715–725. doi: 10.1515/bchm2.1975.356.s1.715. [DOI] [PubMed] [Google Scholar]
- Varel V. H., Bryant M. P. Nutritional features of Bacteroides fragilis subsp. fragilis. Appl Microbiol. 1974 Aug;28(2):251–257. doi: 10.1128/am.28.2.251-257.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEGNER G. H., FOSTER E. M. Incorporation of isobutyrate and valerate into cellular plasmalogen by Bacteroides succinogenes. J Bacteriol. 1963 Jan;85:53–61. doi: 10.1128/jb.85.1.53-61.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
