Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Jan;145(1):503–512. doi: 10.1128/jb.145.1.503-512.1981

Sequence homology in the amino-terminal and active-site regions of thermolabile glyceraldehyde-3-phosphate dehydrogenase from a thermophile.

J W Crabb, A L Murdock, T Suzuki, J W Hamilton, J H McLinden, R E Amelunxen
PMCID: PMC217300  PMID: 7462149

Abstract

The unusual thermolability of glyceraldehyde-3-phosphate dehydrogenase from the facultative thermophile Bacillus coagulans KU (Crabb et al., Biochemistry 16:4840-4847, 1977) has provided the first opportunity to study a homologous enzyme from the same genus that exhibits a marked difference in thermostability. In pursuit of the structural bases for the thermostability of proteins, the sequences of the amino terminus (residues 1 through 27) and the active-site cysteine cyanogen bromide peptide (residues 130 through 167) of this enzyme have been determined and compared with sequences of the enzyme from other sources. The importance of comparing phylogenetically related proteins is evident from the 87% identity found between these sequences in the enzyme from B. coagulans and Bacillus stearothermophilus, versus only 45% identity for all other known sequences. The marked sequence identity of the enzyme from the two Bacillus species drew attention to the variable region (residues 138 through 140a) which is exposed to the exterior of the quaternary structure of this enzyme. Based on the reported crystallographic structures of the enzyme from lobster muscle and B. stearothermophilus and space-filling models of the variable region, the segment Asp-Pro-Lys-Ala in B. stearothermophilus should be more thermostable than the analogous sequence, Asp-Ala-Ala-Asn, from B. coagulans. In addition, the space-filling models suggested that the spatial relationship of an amino acid side chain and its potential for close packing and interactions with neighboring side chains may be more important than the type of amino acid substituted.

Full text

PDF
503

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amelunxen R. E., Clark J. Crystallization of thermostable glyceraldehyde-3-phosphate dehydrogenase after removal of coenzyme. Biochim Biophys Acta. 1970 Dec 22;221(3):650–652. doi: 10.1016/0005-2795(70)90239-4. [DOI] [PubMed] [Google Scholar]
  2. Amelunxen R. E. Crystallization of thermostable glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Biochim Biophys Acta. 1966 Aug 10;122(2):175–181. doi: 10.1016/0926-6593(66)90059-2. [DOI] [PubMed] [Google Scholar]
  3. Amelunxen R. E., Murdock A. L. Mechanisms of thermophily. CRC Crit Rev Microbiol. 1978;6(4):343–393. doi: 10.3109/10408417809090626. [DOI] [PubMed] [Google Scholar]
  4. Argos P., Rossman M. G., Grau U. M., Zuber H., Frank G., Tratschin J. D. Thermal stability and protein structure. Biochemistry. 1979 Dec 11;18(25):5698–5703. doi: 10.1021/bi00592a028. [DOI] [PubMed] [Google Scholar]
  5. Biesecker G., Harris J. I., Thierry J. C., Walker J. E., Wonacott A. J. Sequence and structure of D-glyceraldehyde 3-phosphate dehydrogenase from Bacillus stearothermophilus. Nature. 1977 Mar 24;266(5600):328–333. doi: 10.1038/266328a0. [DOI] [PubMed] [Google Scholar]
  6. Bridgen J., Harris J. I., McDonald P. W., Amelunxen R. E., Kimmel J. R. Amino Acid Sequence Around the Catalytic Site in Glyceraldehyde-3-Phosphate Dehydrogenase from Bacillus stearothermophilus. J Bacteriol. 1972 Sep;111(3):797–800. doi: 10.1128/jb.111.3.797-800.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buehner M., Ford G. C., Olsen K. W., Moras D., Rossman M. G. Three-dimensional structure of D-glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol. 1974 Nov 25;90(1):25–49. doi: 10.1016/0022-2836(74)90254-x. [DOI] [PubMed] [Google Scholar]
  8. Crabb J. W., Murdock A. L., Amelunxen R. E. A proposed mechanism of thermophily in facultative thermophiles. Biochem Biophys Res Commun. 1975 Feb 3;62(3):627–633. doi: 10.1016/0006-291x(75)90445-3. [DOI] [PubMed] [Google Scholar]
  9. Crabb J. W., Murdock A. L., Amelunxen R. E. Purification and characterization of thermolabile glyceraldehyde-3-phosphate dehydrogenase from the facultative thermophile Bacillus coagulans KU. Biochemistry. 1977 Nov 1;16(22):4840–4847. doi: 10.1021/bi00641a014. [DOI] [PubMed] [Google Scholar]
  10. Davidson B. E., Sajgò M., Noller H. F., Harris J. I. Amino-acid sequence of glyceraldehyde 3-phosphate dehydrogenase from lobster muscle. Nature. 1967 Dec 23;216(5121):1181–1185. doi: 10.1038/2161181a0. [DOI] [PubMed] [Google Scholar]
  11. Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
  12. Grütter M. G., Hawkes R. B., Matthews B. W. Molecular basis of thermostability in the lysozyme from bacteriophage T4. Nature. 1979 Feb 22;277(5698):667–669. doi: 10.1038/277667a0. [DOI] [PubMed] [Google Scholar]
  13. Harris J. I., Perham R. N. Glyceraldehyde 3-phosphate dehydrogenase from pig muscle. Nature. 1968 Sep 7;219(5158):1025–1028. doi: 10.1038/2191025a0. [DOI] [PubMed] [Google Scholar]
  14. Hocking J. D., Harris J. I. Glyceraldehyde 3-phosphate dehydrogenase from an extreme thermophile, Thermus aquaticus. Experientia Suppl. 1976;26:121–133. doi: 10.1007/978-3-0348-7675-9_10. [DOI] [PubMed] [Google Scholar]
  15. Hocking J. D., Harris J. I. Purification by affinity chromatography of thermostable glyceraldehyde 3-phosphate dehydrogenase from Thermus aquaticus. FEBS Lett. 1973 Aug 15;34(2):280–284. doi: 10.1016/0014-5793(73)80812-9. [DOI] [PubMed] [Google Scholar]
  16. Kulbe K. D. Micropolyamide thin-layer chromatography of phenylthiohydantoin amino acids (PTH) at subnanomolar level. A rapid microtechnique for simultaneous multisample identification after automated Edman degradations. Anal Biochem. 1974 Jun;59(2):564–573. doi: 10.1016/0003-2697(74)90310-8. [DOI] [PubMed] [Google Scholar]
  17. Mendez E., Lai C. Y. Regeneration of amino acids from thiazolinones formed in the Edman degradation. Anal Biochem. 1975 Sep;68(1):47–53. doi: 10.1016/0003-2697(75)90677-6. [DOI] [PubMed] [Google Scholar]
  18. Moras D., Olsen K. W., Sabesan M. N., Buehner M., Ford G. C., Rossmann M. G. Studies of asymmetry in the three-dimensional structure of lobster D-glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem. 1975 Dec 10;250(23):9137–9162. doi: 10.2210/pdb1gpd/pdb. [DOI] [PubMed] [Google Scholar]
  19. Novitsky T. J., Chan M., Himes R. H., Akagi J. M. Effect of temperature on the growth and cell wall chemistry of a facultative thermophilic Bacillus. J Bacteriol. 1974 Feb;117(2):858–865. doi: 10.1128/jb.117.2.858-865.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Olsen K. W., Moras D., Rossmann M. G. Sequence variability and structure of D-glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem. 1975 Dec 25;250(24):9313–9321. [PubMed] [Google Scholar]
  21. Perham R. N. The comparative structure of mammalian glyceraldehyde 3-phosphate dehydrogenases. Biochem J. 1969 Jan;111(1):17–21. doi: 10.1042/bj1110017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pisano J. J., Bronzert T. J., Brewer H. B., Jr Advances in the gas chromatographic analysis of amino acid phenyl- and methylthiohydantoins. Anal Biochem. 1972 Jan;45(1):43–59. doi: 10.1016/0003-2697(72)90006-1. [DOI] [PubMed] [Google Scholar]
  23. Singleton R., Jr, Amelunxen R. E. Proteins from thermophilic microorganisms. Bacteriol Rev. 1973 Sep;37(3):320–342. doi: 10.1128/br.37.3.320-342.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smithies O., Gibson D., Fanning E. M., Goodfliesh R. M., Gilman J. G., Ballantyne D. L. Quantitative procedures for use with the Edman-Begg sequenator. Partial sequences of two unusual immunoglobulin light chains, Rzf and Sac. Biochemistry. 1971 Dec 21;10(26):4912–4921. doi: 10.1021/bi00802a013. [DOI] [PubMed] [Google Scholar]
  25. Suzuki K., Imahori K. Glyceraldehyde 3-phosphate dehydrogenase of Bacillus stearothermophilus. Kinetics and physicochemical studies. J Biochem. 1973 Nov;74(5):955–970. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES