Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 Jan;153(1):109–115. doi: 10.1128/jb.153.1.109-115.1983

Iron supply to Escherichia coli by synthetic analogs of enterochelin.

S Heidinger, V Braun, V L Pecoraro, K N Raymond
PMCID: PMC217347  PMID: 6217190

Abstract

Synthetic analogs of enterochelin (enterobactin) were tested for their ability to support the growth of Escherichia coli K-12 under iron-limiting conditions. The cyclic compound MECAM [1,3,5-N.N'; N"-tris-(2,3-dihydroxybenzoyl)-triamino-methylbenzene] and its N-methyl derivative Me3MECAM promoted growth, whereas the 2,3-dihydroxy-5-sulfonyl derivatives MECAMS and Me3MECAMS were inactive. The same results were obtained with TRIMCAM [1,3,5-tris(2,3-dihydroxybenzoylcarbamido)-benzene] and TRIMCAMS (the 2,3-dihydroxy-5-sulfonyl derivative of TRIMCAM). However, the sulfonic acid-containing linear compound LICAMS [1,5,10-N,N', N"-tris(5-sulfo-2,3-dihydroxybenzoyl)-triaza-decane] supported growth. In contrast, LIMCAMC, in which the sulfonyl groups at the five position of LICAMS are replaced by carboxyl groups at the four position, was inactive. The uptake of the active analogs required the functions specified by the fepB, fesB, and tonB genes. Surprisingly, growth promotion of mutants lacking the enterochelin receptor protein in the outer membrane was observed. Only MECAM protected cells against colicin B (which kills cells after entering at the enterochelin uptake sites) and transported Fe3+ at about half the enterochelin rate.

Full text

PDF
109

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisen P., Leibman A. Lactoferrin and transferrin: a comparative study. Biochim Biophys Acta. 1972 Feb 29;257(2):314–323. doi: 10.1016/0005-2795(72)90283-8. [DOI] [PubMed] [Google Scholar]
  2. Hancock R. E., Hantke K., Braun V. Iron transport in Escherichia coli K-12. 2,3-Dihydroxybenzoate-promoted iron uptake. Arch Microbiol. 1977 Sep 28;114(3):231–239. doi: 10.1007/BF00446867. [DOI] [PubMed] [Google Scholar]
  3. Hancock R. E., Hantke K., Braun V. Iron transport of Escherichia coli K-12: involvement of the colicin B receptor and of a citrate-inducible protein. J Bacteriol. 1976 Sep;127(3):1370–1375. doi: 10.1128/jb.127.3.1370-1375.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hantke K., Braun V. A function common to iron-enterochelin transport and action of colicins B, I, V in Escherichia coli. FEBS Lett. 1975 Nov 15;59(2):277–281. doi: 10.1016/0014-5793(75)80392-9. [DOI] [PubMed] [Google Scholar]
  5. Hollifield W. C., Jr, Neilands J. B. Ferric enterobactin transport system in Escherichia coli K-12. Extraction, assay, and specificity of the outer membrane receptor. Biochemistry. 1978 May 16;17(10):1922–1928. doi: 10.1021/bi00603a019. [DOI] [PubMed] [Google Scholar]
  6. Ichihara S., Mizushima S. Identification of an outer membrane protein responsible for the binding of the Fe-enterochelin complex to Escherichia coli cells. J Biochem. 1978 Jan;83(1):137–140. doi: 10.1093/oxfordjournals.jbchem.a131884. [DOI] [PubMed] [Google Scholar]
  7. Konisky J., Soucek S., Frick K., Davies J. K., Hammond C. Relationship between the transport of iron and the amount of specific colicin Ia membrane receptors in Escherichia coli. J Bacteriol. 1976 Jul;127(1):249–257. doi: 10.1128/jb.127.1.249-257.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Langman L., Young I. G., Frost G. E., Rosenberg H., Gibson F. Enterochelin system of iron transport in Escherichia coli: mutations affecting ferric-enterochelin esterase. J Bacteriol. 1972 Dec;112(3):1142–1149. doi: 10.1128/jb.112.3.1142-1149.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lodge J. S., Gaines C. G., Arceneaux J. E., Byers B. R. Non-hydrolytic release of iron from ferrienterobactin analogs by extracts of Bacillus subtilis. Biochem Biophys Res Commun. 1980 Dec 31;97(4):1291–1295. doi: 10.1016/s0006-291x(80)80006-4. [DOI] [PubMed] [Google Scholar]
  10. McIntosh M. A., Chenault S. S., Earhart C. F. Genetic and physiological studies on the relationship between colicin B resistance and ferrienterochelin uptake in Escherichia coli K-12. J Bacteriol. 1979 Jan;137(1):653–657. doi: 10.1128/jb.137.1.653-657.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McIntosh M. A., Earhart C. F. Coordinate regulation by iron of the synthesis of phenolate compounds and three outer membrane proteins in Escherichia coli. J Bacteriol. 1977 Jul;131(1):331–339. doi: 10.1128/jb.131.1.331-339.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moore D. G., Yancey R. J., Lankford C. E., Earhart C. F. Bacteriostatic enterochelin-specific immunoglobulin from normal human serum. Infect Immun. 1980 Feb;27(2):418–423. doi: 10.1128/iai.27.2.418-423.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Neilands J. B., Erickson T. J., Rastetter W. H. Stereospecificity of the ferric enterobactin receptor of Escherichia coli K-12. J Biol Chem. 1981 Apr 25;256(8):3831–3832. [PubMed] [Google Scholar]
  14. O'Brien I. G., Gibson F. The structure of enterochelin and related 2,3-dihydroxy-N-benzoylserine conjugates from Escherichia coli. Biochim Biophys Acta. 1970 Aug 14;215(2):393–402. doi: 10.1016/0304-4165(70)90038-3. [DOI] [PubMed] [Google Scholar]
  15. Pollack J. R., Neilands J. B. Enterobactin, an iron transport compound from Salmonella typhimurium. Biochem Biophys Res Commun. 1970 Mar 12;38(5):989–992. doi: 10.1016/0006-291x(70)90819-3. [DOI] [PubMed] [Google Scholar]
  16. Pugsley A. P., Reeves P. Characterization of group B colicin-resistant mutants of Escherichia coli K-12: colicin resistance and the role of enterochelin. J Bacteriol. 1976 Jul;127(1):218–228. doi: 10.1128/jb.127.1.218-228.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schaller K., Dreher R., Braun V. Structural and functional properties of colicin M. J Bacteriol. 1981 Apr;146(1):54–63. doi: 10.1128/jb.146.1.54-63.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Venuti M. C., Rastetter W. H., Neilands J. B. 1,3,5-Tris(N,N',N''-2,3-dihydroxybenzoyl)amino-methylbenzene, a synthetic iron chelator related to enterobactin. J Med Chem. 1979 Feb;22(2):123–124. doi: 10.1021/jm00188a002. [DOI] [PubMed] [Google Scholar]
  19. Wagegg W., Braun V. Ferric citrate transport in Escherichia coli requires outer membrane receptor protein fecA. J Bacteriol. 1981 Jan;145(1):156–163. doi: 10.1128/jb.145.1.156-163.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weitl F. L., Harris W. R., Raymond K. N. Sulfonated catecholamide analogues of enterobactin as iron sequestering agents. J Med Chem. 1979 Nov;22(11):1281–1283. doi: 10.1021/jm00197a001. [DOI] [PubMed] [Google Scholar]
  21. Weitl F. L., Raymond K. N., Durbin P. W. Synthetic enterobactin analogues. Carboxamido-2,3-dihydroxyterephthalate conjugates of spermine and spermidine. J Med Chem. 1981 Feb;24(2):203–206. doi: 10.1021/jm00134a015. [DOI] [PubMed] [Google Scholar]
  22. Woodrow G. C., Langman L., Young I. G., Gibson F. Mutations affecting the citrate-dependent iron uptake system in Escherichia coli. J Bacteriol. 1978 Mar;133(3):1524–1526. doi: 10.1128/jb.133.3.1524-1526.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wookey P., Rosenberg H. Involvement of inner and outer membrane components in the transport of iron and in colicin B action in Escherichia coli. J Bacteriol. 1978 Feb;133(2):661–666. doi: 10.1128/jb.133.2.661-666.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES