Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 Jan;153(1):286–291. doi: 10.1128/jb.153.1.286-291.1983

Vanadate uptake in Neurospora crassa occurs via phosphate transport system II.

B J Bowman
PMCID: PMC217368  PMID: 6217192

Abstract

Vanadate, a potent inhibitor of plasma membrane ATPases, is taken up by Neurospora crassa only when cells are growing in alkaline medium and starving for phosphate. The appearance of a vanadate uptake system (Km = 8.2 microM; Vmax = 0.15 mmol/min per liter of cell water) occurs under the same conditions required for derepression of a high-affinity phosphate transport system. Phosphate is a competitive inhibitor of vanadate uptake, and vanadate is a competitive inhibitor of phosphate uptake. Furthermore, mutant strains which are either partially constitutive or non-derepressible for the high-affinity phosphate transport system are also partially constitutive or non-derepressible for vanadate uptake. These data indicate that vanadate enters the cell via phosphate transport system II.

Full text

PDF
286

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowman B. J., Allen K. E., Slayman C. W. Vanadate-resistant mutants of Neurospora crassa are deficient in a high-affinity phosphate transport system. J Bacteriol. 1983 Jan;153(1):292–296. doi: 10.1128/jb.153.1.292-296.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowman B. J., Mainzer S. E., Allen K. E., Slayman C. W. Effects of inhibitors on the plasma membrane and mitochondrial adenosine triphosphatases of Neurospora crassa. Biochim Biophys Acta. 1978 Sep 11;512(1):13–28. doi: 10.1016/0005-2736(78)90214-6. [DOI] [PubMed] [Google Scholar]
  3. Bowman B. J., Slayman C. W. The effects of vanadate on the plasma membrane ATPase of Neurospora crassa. J Biol Chem. 1979 Apr 25;254(8):2928–2934. [PubMed] [Google Scholar]
  4. Burns D. J., Beever R. E. Kinetic characterization of the two phosphate uptake systems in the fungus Neurospora crassa. J Bacteriol. 1977 Nov;132(2):511–519. doi: 10.1128/jb.132.2.511-519.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cantley L. C., Jr, Aisen P. The fate of cytoplasmic vanadium. Implications on (NA,K)-ATPase inhibition. J Biol Chem. 1979 Mar 25;254(6):1781–1784. [PubMed] [Google Scholar]
  6. Cantley L. C., Jr, Cantley L. G., Josephson L. A characterization of vanadate interactions with the (Na,K)-ATPase. Mechanistic and regulatory implications. J Biol Chem. 1978 Oct 25;253(20):7361–7368. [PubMed] [Google Scholar]
  7. Cantley L. C., Jr, Josephson L., Warner R., Yanagisawa M., Lechene C., Guidotti G. Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem. 1977 Nov 10;252(21):7421–7423. [PubMed] [Google Scholar]
  8. Gibbons I. R., Cosson M. P., Evans J. A., Gibbons B. H., Houck B., Martinson K. H., Sale W. S., Tang W. J. Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc Natl Acad Sci U S A. 1978 May;75(5):2220–2224. doi: 10.1073/pnas.75.5.2220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goffeau A., Slayman C. W. The proton-translocating ATPase of the fungal plasma membrane. Biochim Biophys Acta. 1981 Dec 30;639(3-4):197–223. doi: 10.1016/0304-4173(81)90010-0. [DOI] [PubMed] [Google Scholar]
  10. Jacobs M., Taiz L. Vanadate inhibition of auxin-enhanced H secretion and elongation in pea epicotyls and oat coleoptiles. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7242–7246. doi: 10.1073/pnas.77.12.7242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lowendorf H. S., Bazinet G. F., Jr, Slayman C. W. Phosphate transport in Neurospora. Derepression of a high-affinity transport system during phosphorus starvation. Biochim Biophys Acta. 1975 May 21;389(3):541–549. doi: 10.1016/0005-2736(75)90164-9. [DOI] [PubMed] [Google Scholar]
  12. Lowendorf H. S., Slayman C. L., Slayman C. W. Phosphate transport in Neurospora. Kinetic characterization of a constitutive, low-affinity transport system. Biochim Biophys Acta. 1974 Dec 24;373(3):369–382. doi: 10.1016/0005-2736(74)90017-0. [DOI] [PubMed] [Google Scholar]
  13. Lowendorf H. S., Slayman C. W. Genetic regulation of phosphate transport system II in Neurospora. Biochim Biophys Acta. 1975 Nov 17;413(1):95–103. doi: 10.1016/0005-2736(75)90061-9. [DOI] [PubMed] [Google Scholar]
  14. Metzenberg R. L. Implications of some genetic control mechanisms in Neurospora. Microbiol Rev. 1979 Sep;43(3):361–383. doi: 10.1128/mr.43.3.361-383.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. O'Neal S. G., Rhoads D. B., Racker E. Vanadate inhibition of sarcoplasmic reticulum Ca2+-ATPase and other ATPases. Biochem Biophys Res Commun. 1979 Aug 13;89(3):845–850. doi: 10.1016/0006-291x(79)91855-2. [DOI] [PubMed] [Google Scholar]
  16. Roomans G. M., Blasco F., Borst-Pauwels G. W. Cotransport of phosphate and sodium by yeast. Biochim Biophys Acta. 1977 May 16;467(1):65–71. doi: 10.1016/0005-2736(77)90242-5. [DOI] [PubMed] [Google Scholar]
  17. SLAYMAN C. W., TATUM E. L. POTASSIUM TRANSPORT IN NEUROSPORA. I. INTRACELLULAR SODIUM AND POTASSIUM CONCENTRATIONS, AND CATION REQUIREMENTS FOR GROWTH. Biochim Biophys Acta. 1964 Nov 29;88:578–592. [PubMed] [Google Scholar]
  18. Willsky G. R., Bennett R. L., Malamy M. H. Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J Bacteriol. 1973 Feb;113(2):529–539. doi: 10.1128/jb.113.2.529-539.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES