Abstract
Mutant strains of Neurospora crassa have been selected which grow on media containing vanadate, an inhibitor of the plasma membrane ATPase. The mutations all map to a single region (designated van) on the left arm of linkage group VII. The van mutants are unable to take up vanadate from the medium and are also deficient in the uptake of phosphate via a derepressible, high-affinity phosphate transport system. In the van mutants, the Km for phosphate transport is elevated as much as 35-fold, indicating that the van locus may code for a structural component of the high-affinity phosphate transport system.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowman B. J. Vanadate uptake in Neurospora crassa occurs via phosphate transport system II. J Bacteriol. 1983 Jan;153(1):286–291. doi: 10.1128/jb.153.1.286-291.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burns D. J., Beever R. E. Kinetic characterization of the two phosphate uptake systems in the fungus Neurospora crassa. J Bacteriol. 1977 Nov;132(2):511–519. doi: 10.1128/jb.132.2.511-519.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowendorf H. S., Bazinet G. F., Jr, Slayman C. W. Phosphate transport in Neurospora. Derepression of a high-affinity transport system during phosphorus starvation. Biochim Biophys Acta. 1975 May 21;389(3):541–549. doi: 10.1016/0005-2736(75)90164-9. [DOI] [PubMed] [Google Scholar]
- Lowendorf H. S., Slayman C. L., Slayman C. W. Phosphate transport in Neurospora. Kinetic characterization of a constitutive, low-affinity transport system. Biochim Biophys Acta. 1974 Dec 24;373(3):369–382. doi: 10.1016/0005-2736(74)90017-0. [DOI] [PubMed] [Google Scholar]
- Lowendorf H. S., Slayman C. W. Genetic regulation of phosphate transport system II in Neurospora. Biochim Biophys Acta. 1975 Nov 17;413(1):95–103. doi: 10.1016/0005-2736(75)90061-9. [DOI] [PubMed] [Google Scholar]
