Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 Jan;153(1):335–339. doi: 10.1128/jb.153.1.335-339.1983

Contributing carbohydrate catabolic pathways in Cyclobacterium marinus.

H D Raj, K A Paveglio
PMCID: PMC217375  PMID: 6848485

Abstract

The primary and secondary pathways of carbohydrate metabolism were determined in a nonfermentative gram-negative ring-forming marine bacterium, Cyclobacterium marinus, by radiorespirometric studies. Whereas glucose is oxidized mainly via the Embden-Meyerhof pathway, gluconate is catabolized mainly via the Entner-Doudoroff pathway, both in conjunction with the tricarboxylic acid cycle as a secondary pathway and with some participation of the pentose phosphate pathway. The operation of these contributing catabolic pathways in this unique marine bacterium was substantiated by assaying the activities of the key enzymes specific to each pathway.

Full text

PDF
335

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROCK T. D. KNOTS IN LEUCOTHRIX MUCOR. Science. 1964 May 15;144(3620):870–872. doi: 10.1126/science.144.3620.870. [DOI] [PubMed] [Google Scholar]
  2. Baumann L., Baumann P. Enzymes of glucose catabolism in cell-free extracts of non-fermentative marine eubacteria. Can J Microbiol. 1973 Feb;19(2):302–304. doi: 10.1139/m73-048. [DOI] [PubMed] [Google Scholar]
  3. Baumann P., Wright B. E. The phosphofructokinase of Dictyostelium discoideum. Biochemistry. 1968 Oct;7(10):3653–3661. doi: 10.1021/bi00850a044. [DOI] [PubMed] [Google Scholar]
  4. Keele B. B., Jr, Hamilton P. B., Elkan G. H. Gluconate catabolism in Rhizobium japonicum. J Bacteriol. 1970 Mar;101(3):698–704. doi: 10.1128/jb.101.3.698-704.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Keele B. B., Jr, Hamilton P. B., Elkan G. H. Glucose catabolism in Rhizobium japonicum. J Bacteriol. 1969 Mar;97(3):1184–1191. doi: 10.1128/jb.97.3.1184-1191.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kottel R. H., Raj H. D. Pathways of carbohydrate metabolism in Microcyclus species. J Bacteriol. 1973 Jan;113(1):341–349. doi: 10.1128/jb.113.1.341-349.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Lessie T., Neidhardt F. C. Adenosine triphosphate-linked control of Pseudomonas aeruginosa glucose-6-phosphate dehydrogenase. J Bacteriol. 1967 Apr;93(4):1337–1345. doi: 10.1128/jb.93.4.1337-1345.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Martínez-De Drets G., Arias A. Enzymatic basis for differentiation of Rhizobium into fast- and slow-growing groups. J Bacteriol. 1972 Jan;109(1):467–470. doi: 10.1128/jb.109.1.467-470.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Peeters T. L., Liu M. S., Aleem M. I. The tricarboxylic acid cycle in Thiobacillus denitrificans and Thiobacillus-A2. J Gen Microbiol. 1970 Nov;64(1):29–35. doi: 10.1099/00221287-64-1-29. [DOI] [PubMed] [Google Scholar]
  11. Raj H. D., Ordal E. J. Microcyclus and related ring-forming bacteria. CRC Crit Rev Microbiol. 1977 Jul;5(3):243–269. doi: 10.3109/10408417709102807. [DOI] [PubMed] [Google Scholar]
  12. Raj H. D. Radiorespirometric studies of Leucothrix mucor. J Bacteriol. 1967 Sep;94(3):615–623. doi: 10.1128/jb.94.3.615-623.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES