Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 Jan;153(1):375–378. doi: 10.1128/jb.153.1.375-378.1983

Enzymatic activity of precursors of Bacillus megaterium spore protease.

R H Hackett, P Setlow
PMCID: PMC217382  PMID: 6401283

Abstract

The protease that initiates rapid proteolysis during germination of Bacillus megaterium spores is synthesized during sporulation as a 46,000-molecular-weight polypeptide (P46) and is processed later in sporulation to a 41,000-molecular-weight polypeptide (P41), which is converted to a 40,000-molecular-weight polypeptide (P40) early in spore germination. P40 is known to be both tetrameric and enzymatically active. In this work, we show that P46 and P41 are both tetrameric, but that only P41 is enzymatically active. The identification of a zymogen form (P46) of this protease explains in part the regulation of the activity of this enzyme.

Full text

PDF
375

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chua G. K., Bushuk W. Purification of wheat proteases by affinity chromatography on hemoglobin-Sepharose column. Biochem Biophys Res Commun. 1969 Oct 22;37(3):545–550. doi: 10.1016/0006-291x(69)90950-4. [DOI] [PubMed] [Google Scholar]
  2. Loshon C. A., Setlow P. Bacillus megaterium spore protease: purification, radioimmunoassay, and analysis of antigen level and localization during growth, sporulation, and spore germination. J Bacteriol. 1982 Apr;150(1):303–311. doi: 10.1128/jb.150.1.303-311.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Loshon C. A., Swerdlow B. M., Setlow P. Bacillus megaterium spore protease. Synthesis and processing of precursor forms during sporulation and germination. J Biol Chem. 1982 Sep 25;257(18):10838–10845. [PubMed] [Google Scholar]
  4. Postemsky C. J., Dignam S. S., Setlow P. Isolation and characterization of Bacillus megaterium mutants containing decreased levels of spore protease. J Bacteriol. 1978 Sep;135(3):841–850. doi: 10.1128/jb.135.3.841-850.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Setlow P., Gerard C., Ozols J. The amino acid sequence specificity of a protease from spores of Bacillus megaterium. J Biol Chem. 1980 Apr 25;255(8):3624–3628. [PubMed] [Google Scholar]
  6. Setlow P., Kornberg A. Biochemical studies of bacterial sporulation and germination. XVII. Sulfhydryl and disulfide levels in dormancy and germination. J Bacteriol. 1969 Dec;100(3):1155–1160. doi: 10.1128/jb.100.3.1155-1160.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Setlow P. Purification and properties of a specific proteolytic enzyme present in spores of Bacillus magaterium. J Biol Chem. 1976 Dec 25;251(24):7853–7862. [PubMed] [Google Scholar]
  8. Setlow P. Spermidine biosynthesis during germination and subsequent vegetative growth of Bacillus megaterium spores. J Bacteriol. 1974 Oct;120(1):311–315. doi: 10.1128/jb.120.1.311-315.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Singh R. P., Setlow B., Setlow P. Levels of small molecules and enzymes in the mother cell compartment and the forespore of sporulating Bacillus megaterium. J Bacteriol. 1977 Jun;130(3):1130–1138. doi: 10.1128/jb.130.3.1130-1138.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES