Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 Jan;153(1):423–428. doi: 10.1128/jb.153.1.423-428.1983

Regulation of the aromatic pathway in the cyanobacterium Synechococcus sp. strain Pcc6301 (Anacystis nidulans).

G C Hall, M B Flick, R A Jensen
PMCID: PMC217389  PMID: 6129240

Abstract

A pattern of allosteric control for aromatic biosynthesis in cyanobacteria relies upon early-pathway regulation as the major control point for the entire branched pathway. In Synechococcus sp. strain PCC6301 (Anacystis nidulans), two enzymes which form precursors for L-phenylalanine biosynthesis are subject to control by feedback inhibition. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (first pathway enzyme) is feedback inhibited by L-tyrosine, whereas prephenate dehydratase (enzyme step 9) is feedback inhibited by L-phenylalanine and allosterically activated by L-tyrosine. Mutants lacking feedback inhibition of prephenate dehydratase excreted relatively modest quantities of L-phenylalanine. In contrast, mutants deregulated in allosteric control of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase excreted large quantities of L-phenylalanine (in addition to even greater quantities of L-tyrosine). Clearly, in the latter mutants, the elevated levels of prephenate must overwhelm the inhibition of prephenate dehydratase by L-phenylalanine, an effect assisted by increased intracellular L-tyrosine, an allosteric activator. The results show that early-pathway flow regulated in vivo by 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase is the dominating influence upon metabolite flow-through to L-phenylalanine. L-Tyrosine biosynthesis exemplifies such early-pathway control even more simply, since 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase is the sole regulatory enzyme subject to end-product control by L-tyrosine.

Full text

PDF
423

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Byng G. S., Kane J. F., Jensen R. A. Diversity in the routing and regulation of complex biochemical pathways as indicators of microbial relatedness. Crit Rev Microbiol. 1982 May;9(4):227–252. doi: 10.3109/10408418209104491. [DOI] [PubMed] [Google Scholar]
  3. Fazel A. M., Jensen R. A. Regulation of prephenate dehydratase in Coryneform species of bacteria by L-phenylalanine and by remote effectors. Arch Biochem Biophys. 1980 Mar;200(1):165–176. doi: 10.1016/0003-9861(80)90343-4. [DOI] [PubMed] [Google Scholar]
  4. Hall G. C., Flick M. B., Gherna R. L., Jensen R. A. Biochemical diversity for biosynthesis of aromatic amino acids among the cyanobacteria. J Bacteriol. 1982 Jan;149(1):65–78. doi: 10.1128/jb.149.1.65-78.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hall G. C., Jensen R. A. Enzymological basis for growth inhibition by L-phenylalanine in the cyanobacterium Synechocystis sp. 29108. J Bacteriol. 1980 Dec;144(3):1034–1042. doi: 10.1128/jb.144.3.1034-1042.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hall G. C., Jensen R. A. Regulatory isozymes of 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase in the cyanobacterium Anabaena sp. strain ATCC 29151. J Bacteriol. 1981 Oct;148(1):361–364. doi: 10.1128/jb.148.1.361-364.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hall G., Flick M. B., Jensen R. A. Approach to recognition of regulatory mutants of cyanobacteria. J Bacteriol. 1980 Aug;143(2):981–988. doi: 10.1128/jb.143.2.981-988.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jensen R. A., Nester E. W. Regulatory enzymes of aromatic amino acid biosynthesis in Bacillus subtilis. I. Purification and properties of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase. J Biol Chem. 1966 Jul 25;241(14):3365–3372. [PubMed] [Google Scholar]
  9. Patel N., Pierson D. L., Jensen R. A. Dual enzymatic routes to L-tyrosine and L-phenylalanine via pretyrosine in Pseudomonas aeruginosa. J Biol Chem. 1977 Aug 25;252(16):5839–5846. [PubMed] [Google Scholar]
  10. Riccardi G., Sora S., Ciferri O. Production of amino acids by analog-resistant mutants of the cyanobacterium Spirulina platensis. J Bacteriol. 1981 Sep;147(3):1002–1007. doi: 10.1128/jb.147.3.1002-1007.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. SRINIVASAN P. R., SPRINSON D. B. 2-Keto-3-deoxy-D-arabo-heptonic acid 7-phosphate synthetase. J Biol Chem. 1959 Apr;234(4):716–722. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES