Abstract
Citrate lyase, the key enzyme of anaerobic citrate catabolism, could not be deleted from Salmonella typhimurium. The only class of mutants found had a mode of covalent regulation that strongly resembled the Escherichia coli system: citrate lyase was only active, i.e., acetylated, when a cosubstrate was present.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beyreuther K., Böhmer H., Dimroth P. Amino-acid sequence of citrate-lyase acyl-carrier protein from Klebsiella aerogenes. Eur J Biochem. 1978 Jun 1;87(1):101–110. doi: 10.1111/j.1432-1033.1978.tb12355.x. [DOI] [PubMed] [Google Scholar]
- DAGLEY S. Dissimilation of citric acid by Aerobacter aerogenes and Escherichia coli. J Gen Microbiol. 1954 Oct;11(2):218–227. doi: 10.1099/00221287-11-2-218. [DOI] [PubMed] [Google Scholar]
- Dimroth P., Eggerer H. Isolation of subunits of citrate lyase and characterization of their function in the enzyme complex. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3458–3462. doi: 10.1073/pnas.72.9.3458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giffhorn F., Gottschalk G. Effect of growth conditions on the activation and inactivation of citrate lyase of Rhodopseudomonas gelatinosa. J Bacteriol. 1975 Dec;124(3):1046–1051. doi: 10.1128/jb.124.3.1046-1051.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giffhorn F., Gottschalk G. Inactivation of citrate lyase from Rhodopseudomonas gelatinosa by a specific deacetylase and inhibition of this inactivation by L-(+1-glutamate. J Bacteriol. 1975 Dec;124(3):1052–1061. doi: 10.1128/jb.124.3.1052-1061.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall B. G. Chromosomal mutation for citrate utilization by Escherichia coli K-12. J Bacteriol. 1982 Jul;151(1):269–273. doi: 10.1128/jb.151.1.269-273.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishiguro N., Hirose K., Asagi M., Sato G. Incompatibility of citrate utilization plasmids isolated from Escherichia coli. J Gen Microbiol. 1981 Mar;123(1):193–196. doi: 10.1099/00221287-123-1-193. [DOI] [PubMed] [Google Scholar]
- Ishiguro N., Sato G., Sasakawa C., Danbara H., Yoshikawa M. Identification of citrate utilization transposon Tn3411 from a naturally occurring citrate utilization plasmid. J Bacteriol. 1982 Mar;149(3):961–968. doi: 10.1128/jb.149.3.961-968.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kulla H., Gottschalk G. Energy-dependent inactivation of citrate lyase in Enterobacter aerogenes. J Bacteriol. 1977 Dec;132(3):764–770. doi: 10.1128/jb.132.3.764-770.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LARA F. J. S., STOKES J. L. Oxidation of citrate by Escherichia coli. J Bacteriol. 1952 Mar;63(3):415–420. doi: 10.1128/jb.63.3.415-420.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lütgens M., Gottschalk G. Why a co-substrate is required for anaerobic growth of Escherichia coli on citrate. J Gen Microbiol. 1980 Jul;119(1):63–70. doi: 10.1099/00221287-119-1-63. [DOI] [PubMed] [Google Scholar]
- Oppenheimer N. J., Singh M., Sweeley C. C., Sung S. J., Srere P. A. The configuration and location of the ribosidic linkage in the prosthetic group of citrate lyase (Klebsiella aerogenes). J Biol Chem. 1979 Feb 25;254(4):1000–1002. [PubMed] [Google Scholar]
- Sanderson K. E., Hartman P. E. Linkage map of Salmonella typhimurium, edition V. Microbiol Rev. 1978 Jun;42(2):471–519. doi: 10.1128/mr.42.2.471-519.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith H. W., Parsell Z., Green P. Thermosensitive H1 plasmids determining citrate utilization. J Gen Microbiol. 1978 Dec;109(2):305–311. doi: 10.1099/00221287-109-2-305. [DOI] [PubMed] [Google Scholar]
- VAUGHN R. H., OSBORNE J. T., WEDDING G. T., TABACHNICK J., BEISEL C. G., BRAXTON T. The utilization of citrate by Escherichia coli. J Bacteriol. 1950 Aug;60(2):119–127. doi: 10.1128/jb.60.2.119-127.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
