Abstract
The RNA and protein products synthesized from ColE1 DNA were observed before and after cutting the DNA with different restriction enzymes. Synthesis was carried out in the DNA-directed coupled transcription translation system. The S-30 extracts used to catalyze synthesis were prepared from a recB mutant in which the linear DNA fragments resulting from restriction enzyme cleavage were spared from the usual degradation by exonucleolytic attack. By correlating the observed in vitro synthesized products with the location of the cleavage sites in the plasmid chromosome, it was possible to identify specific gene products. The col gene catalyzes the synthesis of numerous peptides in addition to the 56-kilodalton colicin protein encoded by this gene. Most of the subsidiary products appear to arise as the result of premature termination by a mechanism(s) which remains to be determined. A unique RNA and protein were characterized as products of the imm gene. The RNA has an estimated mass of 150 kilodaltons, and the protein has an estimated mass of 13 kilodaltons. From the DNA sequence of the chromosome, it was concluded that the transcripts from the imm and col genes must crisscross each other over a region of about 75 base pairs. Such a pattern of transcription might lead to interference of transcription of one gene by the other gene. Consistent with this hypothesis, it was found that imm gene transcription increased severalfold in vitro when the chromosome was cleaved in a way that eliminated transcription originating at the col gene promoter. Surprisingly, the increase in transcription by this mechanism did not result in a significant increase in the synthesis of the imm gene-encoded protein.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chen H. Z., Zubay G. Prokaryotic coupled transcription-translation. Methods Enzymol. 1983;101:674–690. doi: 10.1016/0076-6879(83)01047-2. [DOI] [PubMed] [Google Scholar]
- Dougan G., Sherratt D. The transposon Tn1 as a probe for studying ColE1 structure and function. Mol Gen Genet. 1977 Mar 7;151(2):151–160. doi: 10.1007/BF00338689. [DOI] [PubMed] [Google Scholar]
- Inselburg J., Applebaum B. Proteins synthesized in minicells containing plasmid ColE1 and its mutants. J Bacteriol. 1978 Mar;133(3):1444–1451. doi: 10.1128/jb.133.3.1444-1451.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kastelein R. A., Remaut E., Fiers W., van Duin J. Lysis gene expression of RNA phage MS2 depends on a frameshift during translation of the overlapping coat protein gene. Nature. 1982 Jan 7;295(5844):35–41. doi: 10.1038/295035a0. [DOI] [PubMed] [Google Scholar]
- Meagher R. B., Tait R. C., Betlach M., Boyer H. W. Protein expression in E. coli minicells by recombinant plasmids. Cell. 1977 Mar;10(3):521–536. doi: 10.1016/0092-8674(77)90039-3. [DOI] [PubMed] [Google Scholar]
- Oka A., Nomura N., Morita M., Sugisaki H., Sugimoto K., Takanami M. Nucleotide sequence of small ColE1 derivatives: structure of the regions essential for autonomous replication and colicin E1 immunity. Mol Gen Genet. 1979 May 4;172(2):151–159. doi: 10.1007/BF00268276. [DOI] [PubMed] [Google Scholar]
- Patient R. K. Characterization of in vitro transcription initiation and termination sites in Col E1 DNA. Nucleic Acids Res. 1979 Jun 25;6(8):2647–2665. doi: 10.1093/nar/6.8.2647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz S. A., Helinski D. R. Purification and characterization of colicin E1. J Biol Chem. 1971 Oct 25;246(20):6318–6327. [PubMed] [Google Scholar]
- Shafferman A., Cohen S., Flashner Y. A DNA segment within the colicin E1 structural gene on ColE1 affecting immunity to colicin. Mol Gen Genet. 1978 Sep 8;164(3):259–264. doi: 10.1007/BF00333155. [DOI] [PubMed] [Google Scholar]
- Vogelstein B., Gillespie D. Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci U S A. 1979 Feb;76(2):615–619. doi: 10.1073/pnas.76.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada M., Ebina Y., Miyata T., Nakazawa T., Nakazawa A. Nucleotide sequence of the structural gene for colicin E1 and predicted structure of the protein. Proc Natl Acad Sci U S A. 1982 May;79(9):2827–2831. doi: 10.1073/pnas.79.9.2827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang H. L., Heller K., Gellert M., Zubay G. Differential sensitivity of gene expression in vitro to inhibitors of DNA gyrase. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3304–3308. doi: 10.1073/pnas.76.7.3304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang H. L., Ivashkiv L., Chen H. Z., Zubay G., Cashel M. Cell-free coupled transcription-translation system for investigation of linear DNA segments. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7029–7033. doi: 10.1073/pnas.77.12.7029. [DOI] [PMC free article] [PubMed] [Google Scholar]




