Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 May;154(2):846–853. doi: 10.1128/jb.154.2.846-853.1983

Multiple pathways for isoleucine biosynthesis in the spirochete Leptospira.

H N Westfall, N W Charon, D E Peterson
PMCID: PMC217537  PMID: 6404889

Abstract

Spirochetes of the genus Leptospira have previously been shown to use an unusual pathway to synthesize isoleucine. For reasons of convenience, we assume that only one unusual pathway is found in the genus, and we refer to it as the pyruvate pathway. We determined the distribution of this pyruvate pathway in representatives of the seven Leptospira DNA hybridization groups. Our method included labeling the representative strains with radioactive carbon dioxide and other radioactive precursors, fractionating the cells, and determining the specific activities (counts detected per nanomole) of the amino acids found in the protein fractions. On the basis of isoleucine biosynthesis, we found that the genus can be classified as follows: class I primarily, if not exclusively, uses the well-known threonine pathway; class II uses mostly the pyruvate pathway, with a minor amount of isoleucine being synthesized via the threonine pathway; and class III uses the pyruvate pathway exclusively. No relationship appears to exist between the degree of DNA hybridization and the classes of isoleucine biosynthesis. Although the precise intermediates on the pyruvate pathway are unknown, the origin of the carbon skeleton of isoleucine synthesized by this pathway is consistent with a borrowing of the leucine biosynthetic enzymes. However, we found that the pyruvate pathway is not controlled by leucine and that the two isoleucine pathways are independently regulated. Finding major and highly evolved multiple biosynthetic pathways of a specific amino acid within one genus is unique, and, conceivably, represents phylogenetic diversity within Leptospira.

Full text

PDF
846

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAMSKY T., SHEMIN D. THE FORMATION OF ISOLEUCINE FROM BETA-METHYLASPARTIC ACID IN ESCHERICHIA COLI W. J Biol Chem. 1965 Jul;240:2971–2975. [PubMed] [Google Scholar]
  2. Baseman J. B., Cox C. D. Intermediate energy metabolism of Leptospira. J Bacteriol. 1969 Mar;97(3):992–1000. doi: 10.1128/jb.97.3.992-1000.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Byng G. S., Kane J. F., Jensen R. A. Diversity in the routing and regulation of complex biochemical pathways as indicators of microbial relatedness. Crit Rev Microbiol. 1982 May;9(4):227–252. doi: 10.3109/10408418209104491. [DOI] [PubMed] [Google Scholar]
  4. Byng G. S., Whitaker R. J., Gherna R. L., Jensen R. A. Variable enzymological patterning in tyrosine biosynthesis as a means of determining natural relatedness among the Pseudomonadaceae. J Bacteriol. 1980 Oct;144(1):247–257. doi: 10.1128/jb.144.1.247-257.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carleton O., Charon N. W., Allender P., O'Brien S. Helix handedness of Leptospira interrogans as determined by scanning electron microscopy. J Bacteriol. 1979 Mar;137(3):1413–1416. doi: 10.1128/jb.137.3.1413-1416.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Charon N. W., Johnson R. C., Peterson D. Amino acid biosynthesis in the spirochete Leptospira: evidence for a novel pathway of isoleucine biosynthesis. J Bacteriol. 1974 Jan;117(1):203–211. doi: 10.1128/jb.117.1.203-211.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haapala D. K., Rogul M., Evans L. B., Alexander A. D. Deoxyribonucleic acid base composition and homology studies of Leptospira. J Bacteriol. 1969 May;98(2):421–428. doi: 10.1128/jb.98.2.421-428.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henneberry R. C., Cox C. D. Beta-oxidation of fatty acids by Leptospira. Can J Microbiol. 1970 Jan;16(1):41–45. doi: 10.1139/m70-007. [DOI] [PubMed] [Google Scholar]
  9. JOHNSON R. C., ROGERS P. METABOLISM OF LEPTOSPIRAE. I. UTILIZATION OF AMINO ACIDS AND PURINE, AND PYRIMIDINE BASES. Arch Biochem Biophys. 1964 Sep;107:459–470. doi: 10.1016/0003-9861(64)90302-9. [DOI] [PubMed] [Google Scholar]
  10. Jensen R. A. Enzyme recruitment in evolution of new function. Annu Rev Microbiol. 1976;30:409–425. doi: 10.1146/annurev.mi.30.100176.002205. [DOI] [PubMed] [Google Scholar]
  11. Johnson R. C., Harris V. G. Differentiation of pathogenic and saprophytic letospires. I. Growth at low temperatures. J Bacteriol. 1967 Jul;94(1):27–31. doi: 10.1128/jb.94.1.27-31.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson R. C., Livermore B. P., Walby J. K., Jenkin H. M. Lipids of parasitic and saprophytic leptospires. Infect Immun. 1970 Sep;2(3):286–291. doi: 10.1128/iai.2.3.286-291.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kisumi M., Komatsubara S., Chibata I. Pathway for isoleucine formation form pyruvate by leucine biosynthetic enzymes in leucine-accumulating isoleucine revertants of Serratia marcescens. J Biochem. 1977 Jul;82(1):95–103. doi: 10.1093/oxfordjournals.jbchem.a131698. [DOI] [PubMed] [Google Scholar]
  14. Lawther R. P., Calhoun D. H., Adams C. W., Hauser C. A., Gray J., Hatfield G. W. Molecular basis of valine resistance in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1981 Feb;78(2):922–925. doi: 10.1073/pnas.78.2.922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LeMaster D. M., Cronan J. E., Jr Biosynthetic production of 13C-labeled amino acids with site-specific enrichment. J Biol Chem. 1982 Feb 10;257(3):1224–1230. [PubMed] [Google Scholar]
  16. LéJohn H. B. Enzyme regulation, lysine pathways and cell wall structures as indicators of major lines of evolution in fungi. Nature. 1971 May 21;231(5299):164–168. doi: 10.1038/231164a0. [DOI] [PubMed] [Google Scholar]
  17. Perry T. L., Hansen S. Technical pitfalls leading to errors in the quantitation of plasma amino acids. Clin Chim Acta. 1969 Jul;25(1):53–58. doi: 10.1016/0009-8981(69)90226-5. [DOI] [PubMed] [Google Scholar]
  18. Phillips A. T., Nuss J. I., Moosic J., Foshay C. Alternate pathway for isoleucine biosynthesis in Escherichia coli. J Bacteriol. 1972 Feb;109(2):714–719. doi: 10.1128/jb.109.2.714-719.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Robinson I. M., Allison M. J. Isoleucine biosynthesis from 2-methylbutyric acid by anaerobic bacteria from the rumen. J Bacteriol. 1969 Mar;97(3):1220–1226. doi: 10.1128/jb.97.3.1220-1226.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Skarstedt M. T., Greer S. B. Threonine synthetase of Bacillus subtilis. The nature of an associated dehydratase activity. J Biol Chem. 1973 Feb 10;248(3):1032–1044. [PubMed] [Google Scholar]
  21. Stenmark S. L., Pierson D. L., Jensen R. A., Glover G. I. Blue-green bacteria synthesise L-tyrosine by the pretyrosine pathway. Nature. 1974 Feb 1;247(5439):290–292. doi: 10.1038/247290a0. [DOI] [PubMed] [Google Scholar]
  22. UMBARGER H. E. Feedback control by endproduct inhibition. Cold Spring Harb Symp Quant Biol. 1961;26:301–312. doi: 10.1101/sqb.1961.026.01.036. [DOI] [PubMed] [Google Scholar]
  23. Umbarger H. E. Amino acid biosynthesis and its regulation. Annu Rev Biochem. 1978;47:532–606. doi: 10.1146/annurev.bi.47.070178.002533. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES