Skip to main content
Beilstein Journal of Organic Chemistry logoLink to Beilstein Journal of Organic Chemistry
. 2007 Oct 26;3:36. doi: 10.1186/1860-5397-3-36

Electronic differentiation competes with transition state sensitivity in palladium-catalyzed allylic substitutions

Dominik A Lange 1, Bernd Goldfuss 1,
PMCID: PMC2175512  PMID: 17963482

Abstract

Electronic differentiations in Pd-catalyzed allylic substitutions are assessed computationally from transition structure models with electronically modified phospha-benzene-pyridine ligands. Although donor/acceptor substitutions at P and N ligand sites were expected to increase the site selectivity, i.e. the preference for "trans to P" attack at the allylic intermediate, acceptor/acceptor substitution yields the highest selectivity. Energetic and geometrical analyses of transition structures show that the sensitivity for electronic differentiation is crucial for this site selectivity. Early transition structures with acceptor substituted ligands give rise to more intensive Pd-allyl interactions, which transfer electronic P,N differentiation of the ligand more efficiently to the allyl termini and hence yield higher site selectivities.

Introduction

Palladium-catalyzed allylic substitutions allow very selective and mild allylations of C-,N- and O-nucleophiles. [113] The selectivity derives from steric and electronic properties of substrate and catalyst structures. "Side arm guidance" of nucleophiles with multifunctional phosphinoferrocenes [1418] or "chiral pockets" in C2-symmetric diphosphanes based on 2-(diphenyl-phosphino)benzoic acid amides [1922] were applied especially successfully. Chiral P,N-ligands (e.g. phosphinooxazolines, phox) [2327] provide in addition to steric control the possibility for "electronic differentiation", originating from the trans-influence [28] of different donor atoms. Nucleophiles (e.g. dimethylmalonate) normally favour addition to the "trans to phosphorus" position at the Pd-η3-allylic intermediate (Scheme 1). [2942] This "trans to P" rule is supported by X-ray and computational analyses of Pd-η3-allylic intermediates, which exhibit longer and hence weaker Pd-Callyl bonds trans to P (i.e. the stronger π-acceptor vs. N) and hence are more susceptible to nucleophilic attack (Scheme 1). [2941] This electronic differentiation contributes to the high selectivity in Pd-catalyzed asymmetric allylic substitutions[19] and provides also an explanation for α-memory effects. [4243] Computational model systems for P,N-ligands, i.e. PH3 and para-substituted pyridines, have shown that cis-trans differentiations, i.e. the electronic site selectivity, of nucleophilic additions to Pd-η3-allylic intermediates is highest for electron poor pyridine ligands.[45]

Scheme 1.

Scheme 1

Electronic and steric differentiations provide the basis for the high selectivity of P,N-ligands in Pd-catalyzed allylic substitutions. Effects are studied with P-N-model ligands with para-substituted, coplanar phosphabenzene and pyridine moieties.

To further explore origins of site selectivities based on electronic differentiations in Pd-catalyzed allylic substitutions, we here employ a more advanced model system with phosphabenzene, [4548] and pyridine moieties for the crucial step of Pd-catalyzed allylic substitutions. Both P- and N-coordination sites are tuned electronically with para-substituents to reveal energetic and geometrical effects on cis- vs. trans- additions of nucleophiles to the Pd-η3-allylic intermediates (Scheme 1).

Results and Discussion

Electron donating or withdrawing groups (i. e. X, Y = HNMe, H, NO2) in para-positions of phosphabenzene (X) and pyridine (Y) units tune electronic characteristics of P,N-ligand models in Pd-catalyzed allylic substitutions (Scheme 1). The phosphabenzene and pyridine moieties are linked via Car-Car bonds and a methylene bridge retains planarity and limits conformational flexibility. NHMe rather than higher substituted NMe2 was employed as donor group, to retain lp-aryl conjugation. Ammonia serves as model nucleophile and attacks the Pd-η3-allylic intermediate cis or trans to phosphorus. This cis vs. trans site selectivity is employed as measure for electronic differentiation induced by the ligand system (Scheme 2).

Scheme 2.

Scheme 2

Activation (ΔEa) and reaction (ΔEr) energies (kcal mol-1), computed for the P,N-ligand model with tuneable electronic differentiation.

The lowest activation energies (Ea, Table 1) for ammonia addition to the Pd-η3-allylic intermediate are apparent for strong electron withdrawing para-substituted phosphabenzene and pyridine units, i.e. X, Y = NO2 (Figure 1 and Figure 2, Eatrans = 2.19, Eacis = 2.52 kcal mol-1, Table 1). The highest activation energies result from electron donating amino groups X, Y = NHMe (Figure 3 and Figure 4, Eatrans = 10.67, Eacis = 10.47 kcal mol-1, Table 1, Scheme 2). Such electronic tunings of the ligands strongly affect the reactivity and give rise to increased or decreased electrophilicity of Pd-allyl intermediates.

Table 1.

Activation (Ea) and reaction energies (Er) reflecting electronic differentiations in transition structures (ΔEacis-trans) and Pd-ene products relative to Pd-allyl and NH3 reactands (pb = phosphabenzene; py = pyridine moieties)[a]

pb-X py-Y Ea TS ΔEaTS ErProd ΔErProd

H HNMe cis 8.55 0.03 7.81 0.55
trans 8.52 8.36
H H cis 6.38 0.17 5.14 0.52
trans 6.21 5.67
H NO2 cis 4.47 0.27 2.48 0.54
trans 4.20 3.02

HNMe HNMe cis 10.47 -0.20 [b] 10.33 0.65
trans 10.67 10.98
HNMe H cis 8.43 -0.03[b] 7.80 0.60
trans 8.46 8.40
HNMe NO2 cis 6.61 0.10 5.34 0.65
trans 6.51 5.99

NO2 HNMe cis 6.34 0.08 5.05 0.53
trans 6.26 5.58
NO2 H cis 4.24 0.23 2.26 0.43
trans 4.01 2.70
NO2 NO2 cis 2.52 0.33 -0.25[c] 0.54
trans 2.19 0.29

[a] B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd) optimized structures. Energies include ZPE corrections scaled by 0.9806; [b] Negative ΔEaTS with Eacis < Eatrans; [c] exothermic reaction energy.

Figure 1.

Figure 1

Transition structure for the energetically favored trans to phosphorus addition of ammonia at the Pd-η3-allylic intermediate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd)). Bond distances are given in Å.

Figure 2.

Figure 2

Transition structure for the energetically disfavored cis to phosphorus addition of ammonia at the Pd-η3-allylic intermediate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd)). Bond distances are given in Å.

Figure 3.

Figure 3

Transition structure for the energetically disfavored trans to phosphorus addition of ammonia at the Pd-η3-allylic intermediate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd)). Bond distances are given in Å.

Figure 4.

Figure 4

Transition structure for the energetically favored cis to phosphorus addition of ammonia at the Pd-η3-allylic intermediate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd)). Bond distances are given in Å.

The reaction energies (Er) for ammonia addition to the Pd-η3-allylic intermediate show a similar preference: Pd-ene-adduct formation is favoured most for X, Y = NO2 (Ertrans = 0.29, Ercis = -0.25 kcal mol-1) and becomes most unfavourable (i.e. endothermic) for X, Y = NHMe (Ertrans = 10.98, Ercis = 10.33 kcal mol-1, Table 1, Scheme 2). This points to a more π-donating character of the ene product relative to the allyl-cation reactant.

In agreement with the "trans to phosphorus" rule, [2328] attack of ammonia is preferred for most X, Y combinations trans to P, due to the stronger π*/σ* acidity at P in phosphabenzene relative to N in pyridine (Table 1).[44] Surprisingly however, this electronic site selectivity, as it is measured from relative energies of the transition structures (ΔEaTS), is not largest for different X, Y donor-acceptor combinations (Figure 5, Figure 6, Figure 7 and Figure 8), but is highest for X and Y = NO2 (ΔEaTS = 0.33 kcal mol-1, Table 1). Likewise, the smallest electronic site "trans to P" selectivity is not found for X, Y donor-acceptor combinations, but for strong donating X and Y = NHMe. Here, the selectivity is so low, that it even inverts to "cis to P" (ΔEaTS = -0.20 kcal mol-1, Table 1).

Figure 5.

Figure 5

Transition structure for the energetically favored trans to phosphorus addition of ammonia at the Pd-η3-allylic intermediate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd)). Bond distances are given in Å.

Figure 6.

Figure 6

Transition structure for the energetically disfavored cis to phosphorus addition of ammonia at the Pd-η3-allylic intermediate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd)). Bond distances are given in Å.

Figure 7.

Figure 7

Transition structure for the energetically disfavored cis to phosphorus addition of ammonia at the Pd-η3-allylic intermediate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd)). Bond distances are given in Å.

Figure 8.

Figure 8

Transition structure for the energetically favored trans to phosphorus addition of ammonia at the Pd-η3-allylic intermediate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd)). Bond distances are given in Å.

For each phosphabenzene moiety with X = H or NHMe or NO2, the "trans to P" site selectivity ΔEaTS increases for pyridine substituents Y in the order NHMe < H < NO2 (Figure 9, Table 1). Hence, there is apparently an additional effect, which controls the site selectivity ΔEaTS besides the electronic donor vs. acceptor properties of different ligand atoms, i.e. P vs. N. Via this effect; electron withdrawing groups (e.g. NO2) give rise to the highest site-selectivities.

Figure 9.

Figure 9

For each phosphabenzene moiety, the site selectivities ΔEaTS increase with more electron withdrawing pyridine substituents (Y) in the order HNMe < H < NO2 (cf. Table 1).

NO2-substituted ligands give rise to earlier transition structures with longer (forming) H3N-Cα bonds (Table 2, Figure 1 to Figure 8), e.g. trans-TS with X = Y = NO2: H3N-Cα = 2.04 Å (Figure 1). In contrast, amino-donor substitution leads to later transition structures with shorter H3N-Cα distances, e.g. trans-TS with X = Y = NHMe: H3N-Cα = 1.866 Å (Figure 3). This agrees with the more electrophilic properties of cationic Pd-allyl intermediates induced by electron withdrawing ligands.

Table 2.

H3N-Cα, H3N+-Cα and Pd-Cα distances (Å) of transition states and Pd-ene product complexes (pb = phosphabenzene; py = pyridine)[a]

Transition structures Pd-ene product complexes

Pb-X py-Y Pd-Cα H3N-Cα H3N+-Cα

H HNMe cis 2.754 1.930 1.594
trans 2.834 1.906 1.604
H H cis 2.728 1.968 1.588
trans 2.815 1.947 1.598
H NO2 cis 2.696 2.010 1.583
trans 2.797 1.989 1.592

HNMe HNMe cis 2.767 1.898 1.598
trans 2.850 1.866 1.611
HNMe H cis 2.745 1.932 1.593
trans 2.840 1.902 1.603
HNMe NO2 cis 2.718 1.969 1.588
trans 2.824 1.940 1.598

NO2 HNMe cis 2.733 1.970 1.587
trans 2.805 1.957 1.596
NO2 H cis 2.703 2.012 1.582
trans 2.787 1.997 1.590
NO2 NO2 cis 2.674 2.051 1.578
trans 2.765 2.040 1.586

[a] B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd) optimized structures. Energies include ZPE corrections scaled by 0.9806.

These positions on the reaction coordinate indeed correspond to the site selectivity of the transition structures, i.e. ΔEaTS: earlier transition structures have higher, later transition structures exhibit lower "trans to P" selectivities (Figure 10).

Figure 10.

Figure 10

Higher site selectivities, i.e. larger ΔEaTS values, are found for earlier transition structures with larger H3N-Cα distances.

The distance between Pd and the allylic systems decreases from early (allyl cation like) to late (ene like) positions on the reaction coordinate. A closer, more intense Pd-Cα contact (e.g. 2.674 Å, Figure 2, Table 2) stronger delivers electronic differentiation of the ligand, and hence "trans to P" selectivity. Hence, higher electronic site selectivity closely corresponds to intense Pd-allyl interactions with short Pd-Cα distances (Figure 11).

Figure 11.

Figure 11

Higher site selectivities, i.e. larger ΔEaTS values, are found for transition structures with closer, more intense Pd-Cα contacts.

Apparently, the positions on the reaction coordinate influence the site selectivity even stronger than the electronic differentiation between P and N ligand atoms: No substitution (X = Y = H) gives rise to even higher ΔEaTS than more pronounced electronic differentiations with X, Y = NO2 or NHMe (Figure 11), due to higher TS-sensitivity originating from closer Pd-allyl contact.

Conclusion

In Pd-catalyzed allylic substitutions, the electronic site selectivity, i.e. the preference for "trans to P" addition, is affected by the intrinsic electronic differentiation of the ligand atoms, e.g. P vs. N. However, the sensitivity for this electronic differentiation depends on the intensity of the Pd-allyl interaction. A close Pd-allyl distance in an early, allyl cation like transition structure delivers the electronic differentiation of the ligand system more efficiently to the allylic termini (Cα) than a more distant Pd-allyl (more ene like) unit of a late transition structure. Electron withdrawing (e.g. NO2) substituents in the ligand system generate earlier transition structures with more intense Pd-allyl interactions and higher sensitivity for electronic differentiations. Hence, both intrinsic electronic differentiation in the ligand and high TS-sensitivity appear to be crucial for high site-selectivity in Pd-catalyzed allylic substitutions.

Computational details

All structures were fully optimized and characterized by frequency computations as minima or transition structures using Gaussian 03[49] with standard basis sets [5051] and the B3LYP [5255] hybrid-DFT method. Zero point energies and thermochemical analysis were scaled by 0.9806.[56]

Acknowledgments

We are grateful to the Fonds der Chemischen Industrie for financial support as well as for a Dozenten-Stipendium to B.G. We especially thank the Deutsche Forschungsgemeinschaft (DFG) for funding (GO-930/9, GO-930/7 and GO-930/5) as well as the Bayer AG, the BASF AG, the Wacker AG, the Degussa AG, the Raschig GmbH, the Symrise GmbH, the Solvay GmbH and the OMG AG for generous support.

Contributor Information

Dominik A Lange, Email: lange@uni-koeln.de.

Bernd Goldfuss, Email: goldfuss@uni-koeln.de.

References

  • 1.Tsuji J. Acc Chem Res. 1969;2:144–152. doi: 10.1021/ar50017a003. [DOI] [Google Scholar]
  • 2.Trost B M, Fullerton T J. J Am Chem Soc. 1973;95:292–294. doi: 10.1021/ja00782a080. [DOI] [Google Scholar]
  • 3.Trost B M, Van Vranken D L. Chem Rev. 1996;96:395–422. doi: 10.1021/cr9409804. [DOI] [PubMed] [Google Scholar]
  • 4.Pfaltz A, Lautens M. In: Comprehensive Asymmetric Catalysis. Jacobsen E N, Pfaltz A, Yamamoto H, editors. Chapter 24. Heidelberg: Springer; 1999. pp. 2–49. [Google Scholar]
  • 5.Trost B M, Crawley M L. Chem Rev. 2003;103:2921–2944. doi: 10.1021/cr020027w. [DOI] [PubMed] [Google Scholar]
  • 6.Behenna D C, Stoltz B M. J Am Chem Soc. 2004;126:15044–15045. doi: 10.1021/ja044812x. [DOI] [PubMed] [Google Scholar]
  • 7.Trost B M, Xu J. J Am Chem Soc. 2005;127:2846–2847. doi: 10.1021/ja043472c. [DOI] [PubMed] [Google Scholar]
  • 8.Goldfuss B, Löschmann T, Kop-Weiershausen T, Neudörfl J, Rominger F. Beilstein J Org Chem. 2006;2:No. 7. doi: 10.1186/1860-5397-2-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Savoia D, Alvaro G, Di Fabio R, Fiorelli C, Gualandi A, Monari M, Piccinelli F. Adv Synth Catal. 2006;348:1883–1893. doi: 10.1002/adsc.200606109. [DOI] [Google Scholar]
  • 10.Braun M, Meier T. Angew Chem. 2006;118:7106–7109. doi: 10.1002/ange.200602169. Angew. Chem., Int. Ed.2006,45, 6952–6955. [DOI] [Google Scholar]
  • 11.You S-L, Dai L-X. Angew Chem. 2006;118:5372–5374. doi: 10.1002/ange.200601889. Angew. Chem., Int. Ed.2006,45, 5246–5248. [DOI] [Google Scholar]
  • 12.Raluy E, Dieguez M, Pamies O. J Org Chem. 2007;72:2842–2850. doi: 10.1021/jo062311j. [DOI] [PubMed] [Google Scholar]
  • 13.Schulz S R, Blechert S. Angew Chem. 2007;119:4040–4044. doi: 10.1002/ange.200604553. Angew. Chem., Int. Ed.2007,46, 3966–3970. [DOI] [Google Scholar]
  • 14.Hayashi T, Yamamoto A, Hagihara T, Ito Y. Tetrahedron Lett. 1986;27:191–194. doi: 10.1016/S0040-4039(00)83974-X. [DOI] [Google Scholar]
  • 15.Hayashi T, Kanehira K, Hagihara T, Kumada M. J Org Chem. 1988;53:113–120. doi: 10.1021/jo00236a023. [DOI] [Google Scholar]
  • 16.Hayashi T. Pure Appl Chem. 1988;60:7–13. doi: 10.1351/pac198860010007. [DOI] [Google Scholar]
  • 17.Sawamura M, Ito Y. Chem Rev. 1992;92:857–871. doi: 10.1021/cr00013a005. [DOI] [Google Scholar]
  • 18.Enders D, Peters R, Lochtman R, Raabe G, Runsink J, Bats J W. Eur J Org Chem. 2000;20:3399–3426. doi: 10.1002/1099-0690(200010)2000:20&#x0003c;3399::AID-EJOC3399&#x0003e;3.0.CO;2-D. [DOI] [Google Scholar]
  • 19.Trost B M, Breit B, Peukert S, Zambrano J, Ziller J W. Angew Chem. 1995;107:2577–2579. doi: 10.1002/ange.19951072114. Angew. Chem., Int. Ed.1995,34, 2386–2388. [DOI] [Google Scholar]
  • 20.Trost B M. Acc Chem Res. 1996;29:355–364. doi: 10.1021/ar9501129. [DOI] [Google Scholar]
  • 21.Trost B M, Heinemann C, Ariza X, Weigand S. J Am Chem Soc. 1999;121:8667–8668. doi: 10.1021/ja991821a. [DOI] [Google Scholar]
  • 22.Trost B M, Ariza X. J Am Chem Soc. 1999;121:10727–10737. doi: 10.1021/ja992754n. [DOI] [Google Scholar]
  • 23.Helmchen G, Kudis S, Sennehenn P, Steinhagen H. Pure Appl Chem. 1997;69:513–519. doi: 10.1351/pac199769030513. [DOI] [Google Scholar]
  • 24.Helmchen G. J Organomet Chem. 1999;576:203–214. doi: 10.1016/S0022-328X(98)01059-6. [DOI] [Google Scholar]
  • 25.Kolmar M, Goldfuss B, Reggelin M, Rominger F, Helmchen G. Chem–Eur J. 2001;7:4913–4927. doi: 10.1002/1521-3765(20011119)7:22&#x0003c;4913::AID-CHEM4913&#x0003e;3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  • 26.Kollmar M, Steinhagen H, Janssen J P, Goldfuss B, Malinovskaya S A, Vázques J, Rominger F, Helmchen G. Chem–Eur J. 2002;8:3103–3114. doi: 10.1002/1521-3765(20020715)8:14&#x0003c;3103::AID-CHEM3103&#x0003e;3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  • 27.Vázquez J, Goldfuss B, Helmchen G. J Organomet Chem. 2002;641:67–70. doi: 10.1016/S0022-328X(01)01308-0. [DOI] [Google Scholar]
  • 28.Appleton T G, Clark H C, Manzer L E. Coord Chem Rev. 1973;10:335–422. doi: 10.1016/S0010-8545(00)80238-6. [DOI] [Google Scholar]
  • 29.Sprinz J, Kiefer M, Helmchen G, Reggelin M, Huttner G, Walter O, Zsolnai L. Tetrahedron Lett. 1994;35:1523–1526. doi: 10.1016/S0040-4039(00)76748-7. [DOI] [Google Scholar]
  • 30.Ward T R. Organometallics. 1996;15:2836–2838. doi: 10.1021/om960158l. [DOI] [Google Scholar]
  • 31.Oslob J D, Akermark B, Helquist P, Norrby P-O. Organometallics. 1997;16:3015–3021. doi: 10.1021/om9700371. [DOI] [Google Scholar]
  • 32.Moberg C, Bremberg U, Hallman K, Svensson M, Norbby P-O, Hallberg A, Larhed M, Csöregh I. Pure Appl Chem. 1999;71:1477–1485. doi: 10.1351/pac199971081477. [DOI] [Google Scholar]
  • 33.Hagelin H, Akermark B, Norrby P-O. Organometallics. 1999;18:2884–2895. doi: 10.1021/om990153z. [DOI] [Google Scholar]
  • 34.Hagelin H, Svensson M, Akermark B, Norrby P-O. Organometallics. 1999;18:4574–4583. doi: 10.1021/om990228z. [DOI] [Google Scholar]
  • 35.Pedersen T M, Hansen E, Louise K, Kane J, Rein T, Helquist P, Norrby P-O, Tanner D. J Am Chem Soc. 2001;123:9738–9742. doi: 10.1021/ja005809q. [DOI] [PubMed] [Google Scholar]
  • 36.Tu T, Zhou Y, Hou X, Dai L, Dong X, Yu Y, Sun J. Organometallics. 2003;22:1255–1265. doi: 10.1021/om020706x. [DOI] [Google Scholar]
  • 37.Norrby P-O, Mader M M, Vitale M, Prestat G, Poli G. Organometallics. 2003;22:1849–1855. doi: 10.1021/om030066d. [DOI] [Google Scholar]
  • 38.Madec D, Prestat G, Martini E, Fristrup P, Poli G, Norrby P-O. Org Lett. 2005;7:995–998. doi: 10.1021/ol047548l. [DOI] [PubMed] [Google Scholar]
  • 39.Fristrup P, Jensen T, Hoppe J, Norrby P-O. Chem–Eur J. 2006;12:5352–5360. doi: 10.1002/chem.200600152. [DOI] [PubMed] [Google Scholar]
  • 40.Ahlquist M, Fabrizi G, Cacchi S, Norrby P-O. J Am Chem Soc. 2006;128:12785–12793. doi: 10.1021/ja061543x. [DOI] [PubMed] [Google Scholar]
  • 41.Ahlquist M, Norrby P-O. Organometallics. 2007;26:550–553. doi: 10.1021/om0604932. [DOI] [Google Scholar]
  • 42.Goldfuss B, Kazmeier U, Goldfuss B, Kazmaier U. Tetrahedron. 2000;56:6493–6496. doi: 10.1016/S0040-4020(00)00613-X. [DOI] [Google Scholar]
  • 43.Boele M D K, Kamer P C J, Lutz M, Spek A L, de Vries J G, van Leeuwen P W N M, van Strijdonck G P F. Chem–Eur J. 2004;10:6232–6246. doi: 10.1002/chem.200400154. [DOI] [PubMed] [Google Scholar]
  • 44.Goldfuss B. J Organomet Chem. 2006;691:4508–4513. doi: 10.1016/j.jorganchem.2006.01.061. [DOI] [Google Scholar]
  • 45.Märkl G, Lieb F, Merz A. Angew Chem. 1967;79:947–948. doi: 10.1002/ange.19670792125. Angew. Chem., Int. Ed.1967,6, 458–459. [DOI] [Google Scholar]
  • 46.Ashe A J., III J Am Chem Soc. 1971;93:3293–3295. doi: 10.1021/ja00742a038. [DOI] [Google Scholar]
  • 47.Shiotsuka M, Tanamachi T, Matsuda Y. Chem Lett. 1995;24:531–533. doi: 10.1246/cl.1995.531. [DOI] [Google Scholar]
  • 48.Breit B, Winde R, Harms K. J Chem Soc, Perkin Trans 1. 1997;18:2681–2683. doi: 10.1039/a705249i. [DOI] [Google Scholar]
  • 49.Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr, Vreven T, Kudin K N, Burant J C, et al. Gaussian 03. Wallingford, CT: Gaussian, Inc.; 2004. [Google Scholar]
  • 50.Ditchfield R, Hehre W J, Pople J A. J Chem Phys. 1971;54:724–728. doi: 10.1063/1.1674902. [DOI] [Google Scholar]
  • 51.Rassolov V A, Ratner M A, Pople J A, Redfern P C, Curtiss L A. J Comput Chem. 2001;22:976–984. doi: 10.1002/jcc.1058. [DOI] [Google Scholar]
  • 52.Becke A D. J Chem Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. [DOI] [Google Scholar]
  • 53.Stephens P J, Devlin F J, Chabalowski C F, Frisch M J. J Phys Chem. 1994;98:11623–11627. doi: 10.1021/j100096a001. [DOI] [Google Scholar]
  • 54.Lee C, Yang W, Parr R G. Phys Rev B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. [DOI] [PubMed] [Google Scholar]
  • 55.Miehlich B, Savin A, Stoll H, Preuss H. Chem Phys Lett. 1989;157:200–206. doi: 10.1016/0009-2614(89)87234-3. [DOI] [Google Scholar]
  • 56.Scott A P, Radom L. J Phys Chem. 1996;100:16502–16513. doi: 10.1021/jp960976r. [DOI] [Google Scholar]

Articles from Beilstein Journal of Organic Chemistry are provided here courtesy of Beilstein-Institut

RESOURCES