Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 May;109(1):37–47. doi: 10.1111/j.1476-5381.1993.tb13528.x

Effects of 5-HT-receptor and alpha 2-adrenoceptor ligands on the haemodynamic response to acute central hypovolaemia in conscious rabbits.

R G Evans 1, J M Haynes 1, J Ludbrook 1
PMCID: PMC2175591  PMID: 8388300

Abstract

1. We set out to elucidate the pharmacological mechanisms by which alpha 2-adrenoceptor and 5-HT-receptor ligands affect the haemodynamic response to acute central hypovolaemia in conscious rabbits. 2. Acute central hypovolaemia was produced by inflating an inferior vena caval cuff so that cardiac output fell at a constant rate of approximately 8.5% of its baseline level per min. 3. Drugs were administered into the fourth cerebral ventricle in either 154 mM NaCl (saline) or 20% w/v 2-hydroxypropyl-beta-cyclodextrin (beta-CDX). After vehicle treatments, the haemodynamic response to acute central hypovolaemia had the usual two phases. During Phase I, systemic vascular conductance fell in proportion to cardiac output so that mean arterial pressure fell by only 8 mmHg. Phase II commenced when cardiac output had fallen to approximately 60% of its baseline level, when vascular conductance rose abruptly and arterial pressure fell to < or = 40 mmHg. The haemodynamic response was not dependent on the vehicle used (saline or beta-CDX). 4. Methysergide delayed the occurrence of Phase II in a dose-dependent manner, and prevented it at a dose of 30- 600 nmol (geometric mean = 186 nmol). The effects and potency of methysergide were not dependent on the vehicle used, indicating that beta-CDX can be used as a vehicle for fourth ventricular administration of lipophilic drugs to conscious rabbits. Clonidine (10 nmol) reversed the effects of a critical dose of methysergide. 5. Phase II was also prevented by 8-hydroxy-2-(di-n-propylamino)tetralin (5-HT1A-selective agonist, geometric mean critical dose (range) = 13.1 (10-30) nmol), sumatriptan (5-HT1D-selective agonist, 72.1 (10-300) nmol), mesulergine (5-HT2/1C-selective antagonist, 173 (30-1000) nmol), idazoxan (alpha 2-adrenoceptor-selective antagonist, 548 (100-3000) nmol), and mianserin (5-HT2/1C-selective antagonist, 548 (100-3000) nmol). It was not affected by MDL 72222 (5-HT3-selective antagonist, 300 nmol) or ketanserin (5-HT2/1C-selective antagonist, 3000 nmol). 6. To characterize the nature of alpha 2-adrenoceptors in rabbit brainstem, we examined the binding of [3H]-rauwolscine to membrane homogenates of whole brainstem. [3H]-rauwolscine bound to a population of sites with the characteristics of alpha 2A-adrenoceptors. 7. From these results we suggest that activation of 5-HT1A receptors in the brainstem can prevent Phase II of the response to acute central hypovolaemia in conscious rabbits. Our results do not support the notion of an endogenous 5-hydroxytryptaminergic mechanism mediating Phase II.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
37

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaxall H. S., Murphy T. J., Baker J. C., Ray C., Bylund D. B. Characterization of the alpha-2C adrenergic receptor subtype in the opossum kidney and in the OK cell line. J Pharmacol Exp Ther. 1991 Oct;259(1):323–329. [PubMed] [Google Scholar]
  2. Bogle R. G., Pires J. G., Ramage A. G. Evidence that central 5-HT1A-receptors play a role in the von Bezold-Jarisch reflex in the rat. Br J Pharmacol. 1990 Aug;100(4):757–760. doi: 10.1111/j.1476-5381.1990.tb14088.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brace R. A. Fitting straight lines to experimental data. Am J Physiol. 1977 Sep;233(3):R94–R99. doi: 10.1152/ajpregu.1977.233.3.R94. [DOI] [PubMed] [Google Scholar]
  4. Brazenor R. M., Angus J. A. Ergometrine contracts isolated canine coronary arteries by a serotonergic mechanism: no role for alpha adrenoceptors. J Pharmacol Exp Ther. 1981 Aug;218(2):530–536. [PubMed] [Google Scholar]
  5. Broadhurst A. M., Alexander B. S., Wood M. D. Heterogeneous 3H-rauwolscine binding sites in rat cortex: two alpha 2-adrenoceptor subtypes or an additional non-adrenergic interaction? Life Sci. 1988;43(1):83–92. doi: 10.1016/0024-3205(88)90240-8. [DOI] [PubMed] [Google Scholar]
  6. Brown C. M., MacKinnon A. C., McGrath J. C., Spedding M., Kilpatrick A. T. Heterogeneity of alpha 2-adrenoceptors in rat cortex but not human platelets can be defined by 8-OH-DPAT, RU 24969 and methysergide. Br J Pharmacol. 1990 Mar;99(3):481–486. doi: 10.1111/j.1476-5381.1990.tb12954.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burke S. L., Dorward P. K. Influence of endogenous opiates and cardiac afferents on renal nerve activity during haemorrhage in conscious rabbits. J Physiol. 1988 Aug;402:9–27. doi: 10.1113/jphysiol.1988.sp017191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bylund D. B. Heterogeneity of alpha-2 adrenergic receptors. Pharmacol Biochem Behav. 1985 May;22(5):835–843. doi: 10.1016/0091-3057(85)90536-2. [DOI] [PubMed] [Google Scholar]
  9. Bylund D. B., Ray-Prenger C., Murphy T. J. Alpha-2A and alpha-2B adrenergic receptor subtypes: antagonist binding in tissues and cell lines containing only one subtype. J Pharmacol Exp Ther. 1988 May;245(2):600–607. [PubMed] [Google Scholar]
  10. Convents A., Convents D., De Backer J. P., De Keyser J., Vauquelin G. High affinity binding of 3H rauwolscine and 3H RX781094 to alpha 2 adrenergic receptors and non-stereoselective sites in human and rabbit brain cortex membranes. Biochem Pharmacol. 1989 Feb 1;38(3):455–463. doi: 10.1016/0006-2952(89)90385-7. [DOI] [PubMed] [Google Scholar]
  11. Convents A., De Keyser J., De Backer J. P., Vauquelin G. [3H]rauwolscine labels alpha 2-adrenoceptors and 5-HT1A receptors in human cerebral cortex. Eur J Pharmacol. 1989 Jan 17;159(3):307–310. doi: 10.1016/0014-2999(89)90163-5. [DOI] [PubMed] [Google Scholar]
  12. Crist J., Surprenant A. Evidence that 8-hydroxy-2-(n-dipropylamino)tetralin (8-OH-DPAT) is a selective alpha 2-adrenoceptor antagonist on guinea-pig submucous neurones. Br J Pharmacol. 1987 Oct;92(2):341–347. doi: 10.1111/j.1476-5381.1987.tb11329.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evans M. H. Effects of methysergide on some cardiovascular responses in the anaesthetized rabbit. Eur J Pharmacol. 1981 Sep 24;74(4):359–363. doi: 10.1016/0014-2999(81)90055-8. [DOI] [PubMed] [Google Scholar]
  14. Evans R. G., Hayes I. P., Ludbrook J. Effects of alpha-adrenoceptor antagonists and clonidine on the haemodynamic response to acute hypovolaemia in conscious rabbits. Eur J Pharmacol. 1992 Jun 5;216(2):265–272. doi: 10.1016/0014-2999(92)90369-f. [DOI] [PubMed] [Google Scholar]
  15. Evans R. G., Kapoor V., Ludbrook J. A CNS serotonergic mechanism in acute central hypovolemia in conscious rabbits? J Cardiovasc Pharmacol. 1992 Jun;19(6):1009–1017. doi: 10.1097/00005344-199206000-00025. [DOI] [PubMed] [Google Scholar]
  16. Evans R. G., Ludbrook J. Chemosensitive cardiopulmonary afferents and the haemodynamic response to simulated haemorrhage in conscious rabbits. Br J Pharmacol. 1991 Feb;102(2):533–539. doi: 10.1111/j.1476-5381.1991.tb12206.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Evans R. G., Ludbrook J., Potocnik S. J. Intracisternal naloxone and cardiac nerve blockade prevent vasodilatation during simulated haemorrhage in awake rabbits. J Physiol. 1989 Feb;409:1–14. doi: 10.1113/jphysiol.1989.sp017481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Evans R. G., Ludbrook J., Van Leeuwen A. F. Role of central opiate receptor subtypes in the circulatory responses of awake rabbits to graded caval occlusions. J Physiol. 1989 Dec;419:15–31. doi: 10.1113/jphysiol.1989.sp017858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Evans R. G., Ludbrook J., Woods R. L., Casley D. Influence of higher brain centres and vasopressin on the haemodynamic response to acute central hypovolaemia in rabbits. J Auton Nerv Syst. 1991 Jul;35(1):1–14. doi: 10.1016/0165-1838(91)90033-y. [DOI] [PubMed] [Google Scholar]
  20. Gartside S. E., Cowen P. J., Hjorth S. Effects of MDL 73005EF on central pre- and postsynaptic 5-HT1A receptor function in the rat in vivo. Eur J Pharmacol. 1990 Dec 4;191(3):391–400. doi: 10.1016/0014-2999(90)94173-u. [DOI] [PubMed] [Google Scholar]
  21. Greuel J. M., Glaser T. The putative 5-HT1A receptor antagonists NAN-190 and BMY 7378 are partial agonists in the rat dorsal raphe nucleus in vitro. Eur J Pharmacol. 1992 Feb 11;211(2):211–219. doi: 10.1016/0014-2999(92)90531-8. [DOI] [PubMed] [Google Scholar]
  22. Hoyer D., Schoeffter P. 5-HT receptors: subtypes and second messengers. J Recept Res. 1991;11(1-4):197–214. doi: 10.3109/10799899109066399. [DOI] [PubMed] [Google Scholar]
  23. Itoh H., Buñag R. D. Cardiovascular and sympathetic effects of injecting serotonin into the nucleus tractus solitarius in rats. J Pharmacol Exp Ther. 1991 Mar;256(3):1147–1153. [PubMed] [Google Scholar]
  24. Limberger N., Späth L., Starke K. Subclassification of the presynaptic alpha 2-autoreceptors in rabbit brain cortex. Br J Pharmacol. 1991 May;103(1):1251–1255. doi: 10.1111/j.1476-5381.1991.tb12332.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ludbrook J., Potocnik S. J., Woods R. L. Simulation of acute haemorrhage in unanaesthetized rabbits. Clin Exp Pharmacol Physiol. 1988 Aug;15(8):575–584. doi: 10.1111/j.1440-1681.1988.tb01116.x. [DOI] [PubMed] [Google Scholar]
  26. Mandal A. K., Zhong P. Y., Kellar K. J., Gillis R. A. Ventrolateral medulla: an important site of action for the hypotensive effect of drugs that activate serotonin-1A receptors. J Cardiovasc Pharmacol. 1990;15 (Suppl 7):S49–S60. [PubMed] [Google Scholar]
  27. Marlier L., Teilhac J. R., Cerruti C., Privat A. Autoradiographic mapping of 5-HT1, 5-HT1A, 5-HT1B and 5-HT2 receptors in the rat spinal cord. Brain Res. 1991 May 31;550(1):15–23. doi: 10.1016/0006-8993(91)90400-p. [DOI] [PubMed] [Google Scholar]
  28. McCall R. B., Harris L. T., King K. A. Sympatholytic action of yohimbine mediated by 5-HT1A receptors. Eur J Pharmacol. 1991 Jun 25;199(2):263–265. doi: 10.1016/0014-2999(91)90468-6. [DOI] [PubMed] [Google Scholar]
  29. McPherson G. A. A practical computer-based approach to the analysis of radioligand binding experiments. Comput Programs Biomed. 1983 Aug-Oct;17(1-2):107–113. doi: 10.1016/0010-468x(83)90031-4. [DOI] [PubMed] [Google Scholar]
  30. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  31. Pazos A., Probst A., Palacios J. M. Serotonin receptors in the human brain--III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience. 1987 Apr;21(1):97–122. doi: 10.1016/0306-4522(87)90326-5. [DOI] [PubMed] [Google Scholar]
  32. Petrash A. C., Bylund D. B. Alpha-2 adrenergic receptor subtypes indicated by [3H]yohimbine binding in human brain. Life Sci. 1986 Jun 9;38(23):2129–2137. doi: 10.1016/0024-3205(86)90212-2. [DOI] [PubMed] [Google Scholar]
  33. Pitha J., Irie T., Sklar P. B., Nye J. S. Drug solubilizers to aid pharmacologists: amorphous cyclodextrin derivatives. Life Sci. 1988;43(6):493–502. doi: 10.1016/0024-3205(88)90150-6. [DOI] [PubMed] [Google Scholar]
  34. Probst A., Cortés R., Palacios J. M. Distribution of alpha 2-adrenergic receptors in the human brainstem: an autoradiographic study using [3H]p-aminoclonidine. Eur J Pharmacol. 1984 Nov 27;106(3):477–488. doi: 10.1016/0014-2999(84)90051-7. [DOI] [PubMed] [Google Scholar]
  35. Pérgola P. E., Alper R. H. Effects of central serotonin on autonomic control of heart rate in intact and baroreceptor deficient rats. Brain Res. 1992 Jun 12;582(2):215–220. doi: 10.1016/0006-8993(92)90135-v. [DOI] [PubMed] [Google Scholar]
  36. Schacterle G. R., Pollack R. L. A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal Biochem. 1973 Feb;51(2):654–655. doi: 10.1016/0003-2697(73)90523-x. [DOI] [PubMed] [Google Scholar]
  37. Schadt J. C., Ludbrook J. Hemodynamic and neurohumoral responses to acute hypovolemia in conscious mammals. Am J Physiol. 1991 Feb;260(2 Pt 2):H305–H318. doi: 10.1152/ajpheart.1991.260.2.H305. [DOI] [PubMed] [Google Scholar]
  38. Schoeffter P., Hoyer D. Interaction of the alpha-adrenoceptor agonist oxymetazoline with serotonin 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors. Eur J Pharmacol. 1991 Apr 17;196(2):213–216. doi: 10.1016/0014-2999(91)90432-p. [DOI] [PubMed] [Google Scholar]
  39. Shepheard S. L., Jordan D., Ramage A. G. Actions of 8-OH-DPAT on sympathetic and respiratory drives, blood pressure and heart rate in the rabbit. Eur J Pharmacol. 1990 Sep 21;186(2-3):267–272. doi: 10.1016/0014-2999(90)90442-9. [DOI] [PubMed] [Google Scholar]
  40. Simonneaux V., Ebadi M., Bylund D. B. Identification and characterization of alpha 2D-adrenergic receptors in bovine pineal gland. Mol Pharmacol. 1991 Aug;40(2):235–241. [PubMed] [Google Scholar]
  41. Sporton S. C., Shepheard S. L., Jordan D., Ramage A. G. Microinjections of 5-HT1A agonists into the dorsal motor vagal nucleus produce a bradycardia in the atenolol-pretreated anaesthetized rat. Br J Pharmacol. 1991 Oct;104(2):466–470. doi: 10.1111/j.1476-5381.1991.tb12452.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thor K. B., Blitz-Siebert A., Helke C. J. Autoradiographic localization of 5HT1 binding sites in autonomic areas of the rat dorsomedial medulla oblongata. Synapse. 1992 Mar;10(3):217–227. doi: 10.1002/syn.890100305. [DOI] [PubMed] [Google Scholar]
  43. Thor K. B., Blitz-Siebert A., Helke C. J. Autoradiographic localization of 5HT1 binding sites in the medulla oblongata of the rat. Synapse. 1992 Mar;10(3):185–205. doi: 10.1002/syn.890100303. [DOI] [PubMed] [Google Scholar]
  44. Verge D., Daval G., Patey A., Gozlan H., el Mestikawy S., Hamon M. Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol. 1985 Jul 31;113(3):463–464. doi: 10.1016/0014-2999(85)90099-8. [DOI] [PubMed] [Google Scholar]
  45. Xiong W. C., Nelson D. L. Characterization of a [3H]-5-hydroxytryptamine binding site in rabbit caudate nucleus that differs from the 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D subtypes. Life Sci. 1989;45(16):1433–1442. doi: 10.1016/0024-3205(89)90033-7. [DOI] [PubMed] [Google Scholar]
  46. Yaksh T. L., Jang J. D., Nishiuchi Y., Braun K. P., Ro S. G., Goodman M. The utility of 2-hydroxypropyl-beta-cyclodextrin as a vehicle for the intracerebral and intrathecal administration of drugs. Life Sci. 1991;48(7):623–633. doi: 10.1016/0024-3205(91)90537-l. [DOI] [PubMed] [Google Scholar]
  47. Zeng D. W., Lynch K. R. Distribution of alpha 2-adrenergic receptor mRNAs in the rat CNS. Brain Res Mol Brain Res. 1991 Jun;10(3):219–225. doi: 10.1016/0169-328x(91)90064-5. [DOI] [PubMed] [Google Scholar]
  48. van Wijngaarden I., Tulp M. T., Soudijn W. The concept of selectivity in 5-HT receptor research. Eur J Pharmacol. 1990 Jun 12;188(6):301–312. doi: 10.1016/0922-4106(90)90190-9. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES