Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 May;109(1):178–182. doi: 10.1111/j.1476-5381.1993.tb13550.x

Effects of propafenone on calcium currents in single ventricular myocytes of guinea-pig.

L Fei 1, J S Gill 1, W J McKenna 1, A J Camm 1
PMCID: PMC2175599  PMID: 8388297

Abstract

1. The effects of propafenone on the inward calcium current (ICa) were investigated in isolated single ventricular myocytes of the guinea-pig by the whole-cell clamp method. Propafenone inhibited ICa in a dose-dependent manner at concentrations of propafenone ranging from 1 x 10(-8) to 1 x 10(-3) M and half maximal block of ICa occurred at a propafenone concentration of 1.5 x 10(-6) M. Propafenone did not change the current-voltage relation of ICa other than a reduction in amplitude and showed no clear use- or frequency-dependent effects upon ICa (stimulation frequencies from 0.03 to 2 Hz). Propafenone did not alter the steady-state inactivation process: the half maximal activation potentials were 18.5 +/- 2.2 mV in the control state and 20.9 +/- 5.0 mV in the presence of 1 x 10(-6) M propafenone (n = 12, NS). Propafenone (1 x 10(-6) M) increased the half-time of reactivation by 73.9% (n = 6, 212.3 +/- 1.2 ms vs 369.2 +/- 1.5 ms, P < 0.05). 2. We conclude that propafenone blocks ICa in a concentration-dependent and a channel state-, use- or frequency-independent manner. The ICa blockade elicited by propafenone at clinically therapeutic plasma concentration is significant and may be involved in its anti-arrhythmic effects.

Full text

PDF
178

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Campbell T. J. Kinetics of onset of rate-dependent effects of Class I antiarrhythmic drugs are important in determining their effects on refractoriness in guinea-pig ventricle, and provide a theoretical basis for their subclassification. Cardiovasc Res. 1983 Jun;17(6):344–352. doi: 10.1093/cvr/17.6.344. [DOI] [PubMed] [Google Scholar]
  2. Clarkson C. W., Hondeghem L. M. Evidence for a specific receptor site for lidocaine, quinidine, and bupivacaine associated with cardiac sodium channels in guinea pig ventricular myocardium. Circ Res. 1985 Apr;56(4):496–506. doi: 10.1161/01.res.56.4.496. [DOI] [PubMed] [Google Scholar]
  3. Delgado C., Tamargo J., Tejerina T. Electrophysiological effects of propafenone in untreated and propafenone-pretreated guinea-pig atrial and ventricular muscle fibres. Br J Pharmacol. 1985 Dec;86(4):765–775. doi: 10.1111/j.1476-5381.1985.tb11098.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ducouret P. The effect of quinidine on membrane electrical activity in frog auricular fibres studied by current and voltage clamp. Br J Pharmacol. 1976 Jun;57(2):163–184. doi: 10.1111/j.1476-5381.1976.tb07465.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dukes I. D., Vaughan Williams E. M. The multiple modes of action of propafenone. Eur Heart J. 1984 Feb;5(2):115–125. doi: 10.1093/oxfordjournals.eurheartj.a061621. [DOI] [PubMed] [Google Scholar]
  6. Grant A. O., Katzung B. G. The effects of quinidine and verapamil on electrically induced automaticity in the ventricular myocardium of guinea pig. J Pharmacol Exp Ther. 1976 Feb;196(2):407–419. [PubMed] [Google Scholar]
  7. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  8. Hondeghem L. M., Katzung B. G. Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol. 1984;24:387–423. doi: 10.1146/annurev.pa.24.040184.002131. [DOI] [PubMed] [Google Scholar]
  9. Honjo H., Watanabe T., Kamiya K., Kodama I., Toyama J. Effects of propafenone on electrical and mechanical activities of single ventricular myocytes isolated from guinea-pig hearts. Br J Pharmacol. 1989 Jul;97(3):731–738. doi: 10.1111/j.1476-5381.1989.tb12010.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jonason T., Ringqvist I., Bandh S., Nilsson G., Nilsson H., Lidell C., Bjerle P., Olofsson B. O. Propafenone versus disopyramide for treatment of chronic symptomatic ventricular arrhythmias. A multicenter study. Acta Med Scand. 1988;223(6):515–523. doi: 10.1111/j.0954-6820.1988.tb17689.x. [DOI] [PubMed] [Google Scholar]
  11. Ledda F., Mantelli L., Manzini S., Amerini S., Mugelli A. Electrophysiological and antiarrhythmic properties of propafenon in isolated cardiac preparations. J Cardiovasc Pharmacol. 1981 Nov-Dec;3(6):1162–1173. doi: 10.1097/00005344-198111000-00002. [DOI] [PubMed] [Google Scholar]
  12. Lee K. S., Tsien R. W. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature. 1983 Apr 28;302(5911):790–794. doi: 10.1038/302790a0. [DOI] [PubMed] [Google Scholar]
  13. Malfatto G., Zaza A., Forster M., Sodowick B., Danilo P., Jr, Rosen M. R. Electrophysiologic, inotropic and antiarrhythmic effects of propafenone, 5-hydroxypropafenone and N-depropylpropafenone. J Pharmacol Exp Ther. 1988 Aug;246(2):419–426. [PubMed] [Google Scholar]
  14. McLeod A. A., Stiles G. L., Shand D. G. Demonstration of beta adrenoceptor blockade by propafenone hydrochloride: clinical pharmacologic, radioligand binding and adenylate cyclase activation studies. J Pharmacol Exp Ther. 1984 Feb;228(2):461–466. [PubMed] [Google Scholar]
  15. Nilius B., Hess P., Lansman J. B., Tsien R. W. A novel type of cardiac calcium channel in ventricular cells. Nature. 1985 Aug 1;316(6027):443–446. doi: 10.1038/316443a0. [DOI] [PubMed] [Google Scholar]
  16. Noble D. The surprising heart: a review of recent progress in cardiac electrophysiology. J Physiol. 1984 Aug;353:1–50. doi: 10.1113/jphysiol.1984.sp015320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rhodes D. G., Sarmiento J. G., Herbette L. G. Kinetics of binding of membrane-active drugs to receptor sites. Diffusion-limited rates for a membrane bilayer approach of 1,4-dihydropyridine calcium channel antagonists to their active site. Mol Pharmacol. 1985 Jun;27(6):612–623. [PubMed] [Google Scholar]
  18. Scamps F., Undrovinas A., Vassort G. Inhibition of ICa in single frog cardiac cells by quinidine, flecainide, ethmozin, and ethacizin. Am J Physiol. 1989 Mar;256(3 Pt 1):C549–C559. doi: 10.1152/ajpcell.1989.256.3.C549. [DOI] [PubMed] [Google Scholar]
  19. Schlepper M. Propafenone, a review of its profile. Eur Heart J. 1987 Mar;8 (Suppl A):27–32. doi: 10.1093/eurheartj/8.suppl_a.27. [DOI] [PubMed] [Google Scholar]
  20. Starmer C. F., Grant A. O. Phasic ion channel blockade. A kinetic model and parameter estimation procedure. Mol Pharmacol. 1985 Oct;28(4):348–356. [PubMed] [Google Scholar]
  21. Uehara A., Hume J. R. Interactions of organic calcium channel antagonists with calcium channels in single frog atrial cells. J Gen Physiol. 1985 May;85(5):621–647. doi: 10.1085/jgp.85.5.621. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES