Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Jul;109(3):814–818. doi: 10.1111/j.1476-5381.1993.tb13647.x

In vivo release of dopamine from rat striatum, substantia nigra and prefrontal cortex: differential modulation by baclofen.

M Santiago 1, A Machado 1, J Cano 1
PMCID: PMC2175616  PMID: 7689406

Abstract

1. The effect of baclofen, a GABAB receptor agonist, on the release of dopamine from the striatum (ST), substantia nigra (SN) and prefrontal cortex (PFC) of the rat was examined by intracerebral microdialysis. 2. Perfusion of baclofen 50 microM did not affect the striatal release of dopamine. However, dopamine release was markedly reduced in the SN and PFC. 3. 3,4-Dihydroxyphenylacetic acid and homovanillic acid output increased in the ST and decreased in the SN and PFC when baclofen was perfused through the microdialysis probe. 5-Hydroxyindoleacetic acid levels were not affected in any experimental condition by baclofen perfusion. 4. The results suggest that GABAB receptors modulate the release of dopamine in the SN and PFC, but do not affect the striatal release of dopamine, which indicates that the role of GABA receptor activation is different in the dopaminergic terminals of the ST and PFC.

Full text

PDF
814

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie E. D., Keefe K. A., DiFrischia D. S., Zigmond M. J. Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem. 1989 May;52(5):1655–1658. doi: 10.1111/j.1471-4159.1989.tb09224.x. [DOI] [PubMed] [Google Scholar]
  2. Arias-Montaño J. A., Martínez-Fong D., Aceves J. Gamma-aminobutyric acid (GABAB) receptor-mediated inhibition of tyrosine hydroxylase activity in the striatum of rat. Neuropharmacology. 1991 Oct;30(10):1047–1051. doi: 10.1016/0028-3908(91)90132-u. [DOI] [PubMed] [Google Scholar]
  3. Bannon M. J., Bunney E. B., Roth R. H. Mesocortical dopamine neurons: rapid transmitter turnover compared to other brain catecholamine systems. Brain Res. 1981 Aug 10;218(1-2):376–382. [PubMed] [Google Scholar]
  4. Benveniste H., Diemer N. H. Cellular reactions to implantation of a microdialysis tube in the rat hippocampus. Acta Neuropathol. 1987;74(3):234–238. doi: 10.1007/BF00688186. [DOI] [PubMed] [Google Scholar]
  5. Bonanno G., Raiteri M. Coexistence of carriers for dopamine and GABA uptake on a same nerve terminal in the rat brain. Br J Pharmacol. 1987 May;91(1):237–243. doi: 10.1111/j.1476-5381.1987.tb09004.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bowery N. G., Hill D. R., Hudson A. L., Doble A., Middlemiss D. N., Shaw J., Turnbull M. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature. 1980 Jan 3;283(5742):92–94. doi: 10.1038/283092a0. [DOI] [PubMed] [Google Scholar]
  7. Bowery N. G., Hudson A. L., Price G. W. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience. 1987 Feb;20(2):365–383. doi: 10.1016/0306-4522(87)90098-4. [DOI] [PubMed] [Google Scholar]
  8. Chiodo L. A., Bannon M. J., Grace A. A., Roth R. H., Bunney B. S. Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons. Neuroscience. 1984 May;12(1):1–16. doi: 10.1016/0306-4522(84)90133-7. [DOI] [PubMed] [Google Scholar]
  9. Chéramy A., Nieoullon A., Glowinski J. Gabaergic processes involved in the control of dopamine release from nigrostriatal dopaminergic neurons in the cat. Eur J Pharmacol. 1978 Apr 1;48(3):281–295. doi: 10.1016/0014-2999(78)90087-0. [DOI] [PubMed] [Google Scholar]
  10. Dray A., Gonye T. J., Oakley N. R. Caudate stimulation and substantia nigra activity in the rat. J Physiol. 1976 Aug;259(3):825–849. doi: 10.1113/jphysiol.1976.sp011497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dray A. The striatum and substantia nigra: a commentary on their relationships. Neuroscience. 1979;4(10):1407–1439. doi: 10.1016/0306-4522(79)90048-4. [DOI] [PubMed] [Google Scholar]
  12. Ferkany J. W., Enna S. J. Interaction between GABA agonists and the cholinergic muscarinic system in rat corpus striatum. Life Sci. 1980 Jul 14;27(2):143–149. doi: 10.1016/0024-3205(80)90456-7. [DOI] [PubMed] [Google Scholar]
  13. Flint R. S., Murphy J. M., Calkins P. M., McBride W. J. Monoamine, amino acid and cholinergic interactions in slices of rat cerebral cortex. Brain Res Bull. 1985 Aug;15(2):197–202. doi: 10.1016/0361-9230(85)90136-4. [DOI] [PubMed] [Google Scholar]
  14. Floran B., Silva I., Nava C., Aceves J. Presynaptic modulation of the release of GABA by GABAA receptors in pars compacta and by GABAB receptors in pars reticulata of the rat substantia nigra. Eur J Pharmacol. 1988 Jun 10;150(3):277–286. doi: 10.1016/0014-2999(88)90008-8. [DOI] [PubMed] [Google Scholar]
  15. Giorguieff M. F., Kemel M. L., Glowinski J., Besson M. J. Stimulation of dopamine release by GABA in rat striatal slices. Brain Res. 1978 Jan 6;139(1):115–130. doi: 10.1016/0006-8993(78)90064-1. [DOI] [PubMed] [Google Scholar]
  16. Grace A. A., Bunney B. S. The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci. 1984 Nov;4(11):2877–2890. doi: 10.1523/JNEUROSCI.04-11-02877.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hill D. R., Bowery N. G. 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABA B sites in rat brain. Nature. 1981 Mar 12;290(5802):149–152. doi: 10.1038/290149a0. [DOI] [PubMed] [Google Scholar]
  18. Howe J. R., Sutor B., Zieglgänsberger W. Baclofen reduces post-synaptic potentials of rat cortical neurones by an action other than its hyperpolarizing action. J Physiol. 1987 Mar;384:539–569. doi: 10.1113/jphysiol.1987.sp016469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kalivas P. W., Duffy P., Eberhardt H. Modulation of A10 dopamine neurons by gamma-aminobutyric acid agonists. J Pharmacol Exp Ther. 1990 May;253(2):858–866. [PubMed] [Google Scholar]
  20. Lacey M. G., Mercuri N. B., North R. A. On the potassium conductance increase activated by GABAB and dopamine D2 receptors in rat substantia nigra neurones. J Physiol. 1988 Jul;401:437–453. doi: 10.1113/jphysiol.1988.sp017171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ladinsky H., Consolo S., Bianchi S., Jori A. Increase in striatal acetylcholine by picrotoxin in the rat: evidence for a gabergic-dopaminergic-cholinergic link. Brain Res. 1976 May 28;108(2):351–361. doi: 10.1016/0006-8993(76)90191-8. [DOI] [PubMed] [Google Scholar]
  22. Maisonneuve I. M., Keller R. W., Glick S. D. Similar effects of D-amphetamine and cocaine on extracellular dopamine levels in medial prefrontal cortex of rats. Brain Res. 1990 Dec 10;535(2):221–226. doi: 10.1016/0006-8993(90)91604-f. [DOI] [PubMed] [Google Scholar]
  23. Martin G. E., Haubrich D. R. Striatal dopamine release and contraversive rotation elicited by intranigrally applied muscimol. Nature. 1978 Sep 21;275(5677):230–231. doi: 10.1038/275230a0. [DOI] [PubMed] [Google Scholar]
  24. Miller J. A., Richter J. A. Effects of GABAergic drugs in vivo on high-affinity choline uptake in vitro in mouse hippocampal synaptosomes. J Neurochem. 1986 Dec;47(6):1916–1918. doi: 10.1111/j.1471-4159.1986.tb13107.x. [DOI] [PubMed] [Google Scholar]
  25. O'Neill R. D. Effects of intranigral injection of taurine and GABA on striatal dopamine release monitored voltammetrically in the unanaesthetized rat. Brain Res. 1986 Sep 10;382(1):28–32. doi: 10.1016/0006-8993(86)90106-x. [DOI] [PubMed] [Google Scholar]
  26. Olpe H. R., Schellenberg H., Koella W. P. Rotational behavior induced in rats by intranigral application of GABA-related drugs and GABA antagonists. Eur J Pharmacol. 1977 Oct 1;45(3):291–294. doi: 10.1016/0014-2999(77)90012-7. [DOI] [PubMed] [Google Scholar]
  27. Olsen R. W. Drug interactions at the GABA receptor-ionophore complex. Annu Rev Pharmacol Toxicol. 1982;22:245–277. doi: 10.1146/annurev.pa.22.040182.001333. [DOI] [PubMed] [Google Scholar]
  28. Penit-Soria J., Audinat E., Crepel F. Excitation of rat prefrontal cortical neurons by dopamine: an in vitro electrophysiological study. Brain Res. 1987 Nov 10;425(2):263–274. doi: 10.1016/0006-8993(87)90509-9. [DOI] [PubMed] [Google Scholar]
  29. Penit-Soria J., Retaux S., Maurin Y. Effets de la stimulation des récepteurs D1 et D2 dopaminergiques sur la libération d'acide gamma-[3H] aminobutyrique induite électriquement dans le cortex préfrontal du rat. C R Acad Sci III. 1989;309(10):441–446. [PubMed] [Google Scholar]
  30. Pinnock R. D. Hyperpolarizing action of baclofen on neurons in the rat substantia nigra slice. Brain Res. 1984 Nov 26;322(2):337–340. doi: 10.1016/0006-8993(84)90129-x. [DOI] [PubMed] [Google Scholar]
  31. Reid M., Herrera-Marschitz M., Hökfelt T., Terenius L., Ungerstedt U. Differential modulation of striatal dopamine release by intranigral injection of gamma-aminobutyric acid (GABA), dynorphin A and substance P. Eur J Pharmacol. 1988 Mar 15;147(3):411–420. doi: 10.1016/0014-2999(88)90176-8. [DOI] [PubMed] [Google Scholar]
  32. Robinson T. E., Camp D. M. The effects of four days of continuous striatal microdialysis on indices of dopamine and serotonin neurotransmission in rats. J Neurosci Methods. 1991 Dec;40(2-3):211–222. doi: 10.1016/0165-0270(91)90070-g. [DOI] [PubMed] [Google Scholar]
  33. Santiago M., Westerink B. H. Characterization of the in vivo release of dopamine as recorded by different types of intracerebral microdialysis probes. Naunyn Schmiedebergs Arch Pharmacol. 1990 Oct;342(4):407–414. doi: 10.1007/BF00169457. [DOI] [PubMed] [Google Scholar]
  34. Scatton B., Bartholini G. gamma-Aminobutyric acid (GABA) receptor stimulation. IV. Effect of progabide (SL 76002) and other GABAergic agents on acetylcholine turnover in rat brain areas. J Pharmacol Exp Ther. 1982 Mar;220(3):689–695. [PubMed] [Google Scholar]
  35. Seguela P., Gamrani H., Geffard M., Calas A., Le Moal M. Ultrastructural immunocytochemistry of gamma-aminobutyrate in the cerebral and cerebellar cortex of the rat. Neuroscience. 1985 Dec;16(4):865–874. doi: 10.1016/0306-4522(85)90101-0. [DOI] [PubMed] [Google Scholar]
  36. Séguéla P., Watkins K. C., Descarries L. Ultrastructural features of dopamine axon terminals in the anteromedial and the suprarhinal cortex of adult rat. Brain Res. 1988 Feb 23;442(1):11–22. doi: 10.1016/0006-8993(88)91427-8. [DOI] [PubMed] [Google Scholar]
  37. Van Eden C. G., Hoorneman E. M., Buijs R. M., Matthijssen M. A., Geffard M., Uylings H. B. Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neuroscience. 1987 Sep;22(3):849–862. doi: 10.1016/0306-4522(87)92964-2. [DOI] [PubMed] [Google Scholar]
  38. Verney C., Alvarez C., Geffard M., Berger B. Ultrastructural Double-Labelling Study of Dopamine Terminals and GABA-Containing Neurons in Rat Anteromedial Cerebral Cortex. Eur J Neurosci. 1990 Oct;2(11):960–972. doi: 10.1111/j.1460-9568.1990.tb00008.x. [DOI] [PubMed] [Google Scholar]
  39. Waldmeier P. C., Stöcklin K., Feldtrauer J. J. Systemic administration of baclofen and the GABAB antagonist, CGP 35348, does not affect GABA, glutamate or aspartate in microdialysates of the striatum of conscious rats. Naunyn Schmiedebergs Arch Pharmacol. 1992 May;345(5):548–552. doi: 10.1007/BF00168947. [DOI] [PubMed] [Google Scholar]
  40. Westerink B. H., Damsma G., Rollema H., De Vries J. B., Horn A. S. Scope and limitations of in vivo brain dialysis: a comparison of its application to various neurotransmitter systems. Life Sci. 1987 Oct 12;41(15):1763–1776. doi: 10.1016/0024-3205(87)90695-3. [DOI] [PubMed] [Google Scholar]
  41. Westerink B. H., Santiago M., De Vries J. B. In vivo evidence for a concordant response of terminal and dendritic dopamine release during intranigral infusion of drugs. Naunyn Schmiedebergs Arch Pharmacol. 1992 Dec;346(6):637–643. doi: 10.1007/BF00168736. [DOI] [PubMed] [Google Scholar]
  42. Westerink B. H., Tuinte M. H. Chronic use of intracerebral dialysis for the in vivo measurement of 3,4-dihydroxyphenylethylamine and its metabolite 3,4-dihydroxyphenylacetic acid. J Neurochem. 1986 Jan;46(1):181–185. doi: 10.1111/j.1471-4159.1986.tb12942.x. [DOI] [PubMed] [Google Scholar]
  43. Zetterström T., Sharp T., Collin A. K., Ungerstedt U. In vivo measurement of extracellular dopamine and DOPAC in rat striatum after various dopamine-releasing drugs; implications for the origin of extracellular DOPAC. Eur J Pharmacol. 1988 Apr 13;148(3):327–334. doi: 10.1016/0014-2999(88)90110-0. [DOI] [PubMed] [Google Scholar]
  44. Zis A. P., Nomikos G. G., Damsma G., Fibiger H. C. In vivo neurochemical effects of electroconvulsive shock studied by microdialysis in the rat striatum. Psychopharmacology (Berl) 1991;103(3):343–350. doi: 10.1007/BF02244288. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES