Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Jul;109(3):866–872. doi: 10.1111/j.1476-5381.1993.tb13655.x

Antiarrhythmic drugs, clofilium and cibenzoline are potent inhibitors of glibenclamide-sensitive K+ currents in Xenopus oocytes.

H Sakuta 1, K Okamoto 1, Y Watanabe 1
PMCID: PMC2175654  PMID: 8358576

Abstract

1. The novel K+ channel opener, Y-26763 induced outward K+ currents in voltage-clamped follicle-enclosed Xenopus oocytes in a concentration-dependent manner with an EC50 value of 58 microM. 2. The Y-26763-induced K+ current was completely and reversibly blocked by glibenclamide (an ATP-sensitive K+ channel blocker) in a concentration-dependent manner (IC50 140 nM). Effects of several antiarrhythmic drugs on Y-26763-induced glibenclamide-sensitive K+ currents were investigated. 3. (+/-)-Cibenzoline, RS-2135, pirmenol, lorcainide and KW-3407 (class I antiarrhythmic drugs, Na+ channel blockers) suppressed Y-26763 responses in a concentration-dependent manner with IC50 values (in microM) of 6.6, 54, 68, 71 and 370, respectively. 4. Clofilium, E-4031, MS-551 and bretylium (class III antiarrhythmic drugs which increase the action potential duration) also suppressed Y-26763 responses concentration-dependently, IC50 values (in microM) were 3.3, 660, 980 and > or = 2000, respectively. N-acetylprocainamide (class III antiarrhythmic drug) scarcely suppressed Y-26763 responses. 5. The glibenclamide-sensitive K+ currents elicited by KRN2391 were also suppressed by all these antiarrhythmic drugs. 6. The antiarrhythmic drugs, clofilium and (+/-)-cibenzoline block glibenclamide-sensitive K+ channels in Xenopus oocytes at concentrations comparable to their therapeutic plasma levels.

Full text

PDF
866

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adaniya H., Hiraoka M. Effects of a novel class III antiarrhythmic agent, E-4031, on reentrant tachycardias in rabbit right atrium. J Cardiovasc Pharmacol. 1990 Jun;15(6):976–982. doi: 10.1097/00005344-199006000-00016. [DOI] [PubMed] [Google Scholar]
  2. Ashcroft F. M., Harrison D. E., Ashcroft S. J. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. 1984 Nov 29-Dec 5Nature. 312(5993):446–448. doi: 10.1038/312446a0. [DOI] [PubMed] [Google Scholar]
  3. Ashford M. L., Sturgess N. C., Trout N. J., Gardner N. J., Hales C. N. Adenosine-5'-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch. 1988 Aug;412(3):297–304. doi: 10.1007/BF00582512. [DOI] [PubMed] [Google Scholar]
  4. Bokvist K., Rorsman P., Smith P. A. Block of ATP-regulated and Ca2(+)-activated K+ channels in mouse pancreatic beta-cells by external tetraethylammonium and quinine. J Physiol. 1990 Apr;423:327–342. doi: 10.1113/jphysiol.1990.sp018025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cook D. L., Hales C. N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature. 1984 Sep 20;311(5983):271–273. doi: 10.1038/311271a0. [DOI] [PubMed] [Google Scholar]
  6. Dunne M. J. Block of ATP-regulated potassium channels by phentolamine and other alpha-adrenoceptor antagonists. Br J Pharmacol. 1991 Aug;103(4):1847–1850. doi: 10.1111/j.1476-5381.1991.tb12340.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Earl C. Q., Prozialeck W. C., Weiss B. Interaction of alpha adrenergic antagonists with calmodulin. Life Sci. 1984 Jul 30;35(5):525–534. doi: 10.1016/0024-3205(84)90246-7. [DOI] [PubMed] [Google Scholar]
  8. Escande D., Thuringer D., Leguern S., Cavero I. The potassium channel opener cromakalim (BRL 34915) activates ATP-dependent K+ channels in isolated cardiac myocytes. Biochem Biophys Res Commun. 1988 Jul 29;154(2):620–625. doi: 10.1016/0006-291x(88)90184-2. [DOI] [PubMed] [Google Scholar]
  9. Haworth R. A., Goknur A. B., Berkoff H. A. Inhibition of ATP-sensitive potassium channels of adult rat heart cells by antiarrhythmic drugs. Circ Res. 1989 Oct;65(4):1157–1160. doi: 10.1161/01.res.65.4.1157. [DOI] [PubMed] [Google Scholar]
  10. Henquin J. C., Horemans B., Nenquin M., Verniers J., Lambert A. E. Quinine-induced modifications of insulin release and glucose metabolism by isolated pancreatic islets. FEBS Lett. 1975 Oct 1;57(3):280–284. doi: 10.1016/0014-5793(75)80317-6. [DOI] [PubMed] [Google Scholar]
  11. Hidaka H., Tanaka T. Naphthalenesulfonamides as calmodulin antagonists. Methods Enzymol. 1983;102:185–194. doi: 10.1016/s0076-6879(83)02019-4. [DOI] [PubMed] [Google Scholar]
  12. Himmel H. M., Ravens U. TMB-8 as a pharmacologic tool in guinea pig myocardial tissues. I. Effects of TMB-8 on force of contraction and on action potential parameters in atrial and papillary muscles. J Pharmacol Exp Ther. 1990 Oct;255(1):293–299. [PubMed] [Google Scholar]
  13. Honoré E., Lazdunski M. Hormone-regulated K+ channels in follicle-enclosed oocytes are activated by vasorelaxing K+ channel openers and blocked by antidiabetic sulfonylureas. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5438–5442. doi: 10.1073/pnas.88.12.5438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jeandel C., Preiss M. A., Pierson H., Penin F., Cuny G., Bannwarth B., Netter P. Hypoglycaemia induced by cibenzoline. Lancet. 1988 May 28;1(8596):1232–1233. doi: 10.1016/s0140-6736(88)92058-2. [DOI] [PubMed] [Google Scholar]
  15. Kamiya J., Ishii M., Katakami T. Antiarrhythmic effects of MS-551, a new class III antiarrhythmic agent, on canine models of ventricular arrhythmia. Jpn J Pharmacol. 1992 Feb;58(2):107–115. doi: 10.1254/jjp.58.107. [DOI] [PubMed] [Google Scholar]
  16. Kantor P. F., Coetzee W. A., Carmeliet E. E., Dennis S. C., Opie L. H. Reduction of ischemic K+ loss and arrhythmias in rat hearts. Effect of glibenclamide, a sulfonylurea. Circ Res. 1990 Feb;66(2):478–485. doi: 10.1161/01.res.66.2.478. [DOI] [PubMed] [Google Scholar]
  17. Kozlowski R. Z., Ashford M. L. Barbiturates inhibit ATP-K+ channels and voltage-activated currents in CRI-G1 insulin-secreting cells. Br J Pharmacol. 1991 Aug;103(4):2021–2029. doi: 10.1111/j.1476-5381.1991.tb12370.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kumazawa T., Harakawa H., Obase H., Oiji Y., Nito M., Kubo K., Ishii A., Tomioka S., Yamada Y. Synthesis and antiarrhythmic activity of 5,11-dihydro[1]benzoxepino[3,4-b]pyridines. J Med Chem. 1990 Nov;33(11):3095–3100. doi: 10.1021/jm00173a029. [DOI] [PubMed] [Google Scholar]
  19. Kusano K., Miledi R., Stinnakre J. Cholinergic and catecholaminergic receptors in the Xenopus oocyte membrane. J Physiol. 1982 Jul;328:143–170. doi: 10.1113/jphysiol.1982.sp014257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lynch J. J., Jr, Sanguinetti M. C., Kimura S., Bassett A. L. Therapeutic potential of modulating potassium currents in the diseased myocardium. FASEB J. 1992 Aug;6(11):2952–2960. doi: 10.1096/fasebj.6.11.1386585. [DOI] [PubMed] [Google Scholar]
  21. Mannhold R., Voigt W., Bast A., Timmerman H. Molecular pharmacological aspects of antiarrhythmic activity, II: Interaction of class I compounds with calmodulin. Arch Pharm (Weinheim) 1990 Aug;323(8):487–491. doi: 10.1002/ardp.19903230809. [DOI] [PubMed] [Google Scholar]
  22. Matsuoka S., Nawada T., Hisatome I., Miyamoto J., Hasegawa J., Kotake H., Mashiba H. Comparison of Ca2+ channel inhibitory effects of cibenzoline with verapamil on guinea-pig heart. Gen Pharmacol. 1991;22(1):87–91. doi: 10.1016/0306-3623(91)90314-v. [DOI] [PubMed] [Google Scholar]
  23. Müller M., De Weille J. R., Lazdunski M. Chlorpromazine and related phenothiazines inhibit the ATP-sensitive K+ channel. Eur J Pharmacol. 1991 May 30;198(1):101–104. doi: 10.1016/0014-2999(91)90569-c. [DOI] [PubMed] [Google Scholar]
  24. Nakabayashi H., Ito T., Igawa T., Hiraiwa Y., Imamura T., Seta T., Kawato M., Usukura N., Takeda R. Disopyramide induces insulin secretion and plasma glucose diminution: studies using the in situ canine pancreas. Metabolism. 1989 Feb;38(2):179–183. doi: 10.1016/0026-0495(89)90259-x. [DOI] [PubMed] [Google Scholar]
  25. Nakajima T., Shinohara T., Yaoka O., Fukunari A., Shinagawa K., Aoki K., Katoh A., Yamanaka T., Setoguchi M., Tahara T. Y-27152, a long-acting K+ channel opener with less tachycardia: antihypertensive effects in hypertensive rats and dogs in conscious state. J Pharmacol Exp Ther. 1992 May;261(2):730–736. [PubMed] [Google Scholar]
  26. Noack T., Deitmer P., Edwards G., Weston A. H. Characterization of potassium currents modulated by BRL 38227 in rat portal vein. Br J Pharmacol. 1992 Jul;106(3):717–726. doi: 10.1111/j.1476-5381.1992.tb14400.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983 Sep 8;305(5930):147–148. doi: 10.1038/305147a0. [DOI] [PubMed] [Google Scholar]
  28. Notsu T., Tanaka I., Takano M., Noma A. Blockade of the ATP-sensitive K+ channel by 5-hydroxydecanoate in guinea pig ventricular myocytes. J Pharmacol Exp Ther. 1992 Feb;260(2):702–708. [PubMed] [Google Scholar]
  29. Oyama Y., Harata N., Akaike N. Accelerating action of quinidine on the decay phase of transient outward current in dissociated hippocampal pyramidal neurons of rats. Jpn J Pharmacol. 1992 Feb;58(2):185–188. doi: 10.1254/jjp.58.185. [DOI] [PubMed] [Google Scholar]
  30. Phillips R. E., Looareesuwan S., White N. J., Chanthavanich P., Karbwang J., Supanaranond W., Turner R. C., Warrell D. A. Hypoglycaemia and antimalarial drugs: quinidine and release of insulin. Br Med J (Clin Res Ed) 1986 May 17;292(6531):1319–1321. doi: 10.1136/bmj.292.6531.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Plant T. D., Henquin J. C. Phentolamine and yohimbine inhibit ATP-sensitive K+ channels in mouse pancreatic beta-cells. Br J Pharmacol. 1990 Sep;101(1):115–120. doi: 10.1111/j.1476-5381.1990.tb12099.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reder R. F., Danilo P., Jr, Rosen M. R. Effects of pirmenol HCl on electrophysiologic properties of cardiac Purkinje fibers. Eur J Pharmacol. 1980 Feb;61(4):321–333. doi: 10.1016/0014-2999(80)90071-0. [DOI] [PubMed] [Google Scholar]
  33. Sakuta H., Okamoto K., Watanabe Y. Blockade by antiarrhythmic drugs of glibenclamide-sensitive K+ channels in Xenopus oocytes. Br J Pharmacol. 1992 Dec;107(4):1061–1067. doi: 10.1111/j.1476-5381.1992.tb13407.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sakuta H., Sekiguchi M., Okamoto K., Sakai Y. Inactivation of glibenclamide-sensitive K+ channels in Xenopus oocytes by various calmodulin antagonists. Eur J Pharmacol. 1992 Jul 1;226(3):199–207. doi: 10.1016/0922-4106(92)90062-z. [DOI] [PubMed] [Google Scholar]
  35. Schulz A., Hasselblatt A. An insulin-releasing property of imidazoline derivatives is not limited to compounds that block alpha-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol. 1989 Sep;340(3):321–327. doi: 10.1007/BF00168517. [DOI] [PubMed] [Google Scholar]
  36. Semel J. D., Wortham E., Karl D. M. Fasting hypoglycemia associated with disopyramide. Am Heart J. 1983 Nov;106(5 Pt 1):1160–1161. doi: 10.1016/0002-8703(83)90670-1. [DOI] [PubMed] [Google Scholar]
  37. Silver P. J., Connell M. J., Dillon K. M., Cumiskey W. R., Volberg W. A., Ezrin A. M. Inhibition of calmodulin and protein kinase C by amiodarone and other class III antiarrhythmic agents. Cardiovasc Drugs Ther. 1989 Oct;3(5):675–682. doi: 10.1007/BF01857619. [DOI] [PubMed] [Google Scholar]
  38. Spruce A. E., Standen N. B., Stanfield P. R. Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature. 1985 Aug 22;316(6030):736–738. doi: 10.1038/316736a0. [DOI] [PubMed] [Google Scholar]
  39. Sturgess N. C., Ashford M. L., Cook D. L., Hales C. N. The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet. 1985 Aug 31;2(8453):474–475. doi: 10.1016/s0140-6736(85)90403-9. [DOI] [PubMed] [Google Scholar]
  40. Szewczyk A., De Weille J. R., Lazdunski M. TMB-8 (8-(N,N-diethylamino) octyl-3,4,5-trimethoxybenzoate) inhibits the ATP-sensitive K+ channel. Eur J Pharmacol. 1992 Jun 5;226(2):175–177. doi: 10.1016/0922-4106(92)90180-4. [DOI] [PubMed] [Google Scholar]
  41. Weiss B., Levin R. M. Mechanism for selectively inhibiting the activation of cyclic nucleotide phosphodiesterase and adenylate cyclase by antipsychotic agents. Adv Cyclic Nucleotide Res. 1978;9:285–303. [PubMed] [Google Scholar]
  42. Yorikane R., Mizuno H., Itoh Y., Koike H., Miyake S., Shiga H., Kumakura S., Fukami M., Shimoji Y., Hashimoto T. Antiarrhythmic and cardiovascular profiles of the fused indole compound (3aR,12R,12aR,12bS)-12-amino-2,3,3a,4,11,12,12a,12b-octahydro-10-hydrox yisoquino [2,1,8-lma]carbazol-5(1H)-one hydrochloride 1.5 hydrate. Arzneimittelforschung. 1991 Nov;41(11):1130–1136. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES