Abstract
1. The opioid type of swim-stress induced antinociception (SIA) is mediated via mu-sites in preweanling rats and predominantly by delta-sites in postweanling animals. We have studied the effect of delay of weaning on the receptor transition of this behaviour in the developing rat. 2. Litters were weaned normally at day 21 or allowed to remain with their mothers until assessment of swim SIA. Animals were stressed by warm water (20 degrees C) swimming for 3 min periods and antinociception assessed by the tail immersion test (50 degrees C). 3. Naloxone (10 mg kg-1) partially reversed swim SIA in both 25 day old weaned and non-weaned rats. 4. Naltrindole (1 mg kg-1) partially reversed swim SIA in 25 day old weaned rats but had no effect in non-weaned animals. Naltrindole (5 mg kg-1) completely abolished swim SIA in weaned rats but was without effect in non-weaned groups. Antinociceptive responses to the mu-agonist, alfentanil (60 micrograms kg-1) were unaffected by naltrindole at 1 mg kg-1 but were partially reversed at 5 mg kg-1. 5. In 30 day old non-weaned rats, naltrindole (5 mg kg-1) abolished the swim SIA. 6. In conclusion, transition from mu to delta-receptor control of swim SIA in rat pups can be delayed by between 5 and 10 days by delay of weaning. The environmental stimulus of weaning can activate opioid receptor subtype operation of biological responses in the developing animal.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bodnar R. J. Effects of opioid peptides on peripheral stimulation and "stress"-induced analgesia in animals. Crit Rev Neurobiol. 1990;6(1):39–49. [PubMed] [Google Scholar]
- Chavkin C., James I. F., Goldstein A. Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science. 1982 Jan 22;215(4531):413–415. doi: 10.1126/science.6120570. [DOI] [PubMed] [Google Scholar]
- Coupe C., Perdereau D., Ferre P., Hitier Y., Narkewicz M., Girard J. Lipogenic enzyme activities and mRNA in rat adipose tissue at weaning. Am J Physiol. 1990 Jan;258(1 Pt 1):E126–E133. doi: 10.1152/ajpendo.1990.258.1.E126. [DOI] [PubMed] [Google Scholar]
- Crook T. J., Kitchen I., Hill R. G. Effects of the delta-opioid receptor antagonist naltrindole on antinociceptive responses to selective delta-agonists in post-weanling rats. Br J Pharmacol. 1992 Oct;107(2):573–576. doi: 10.1111/j.1476-5381.1992.tb12785.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Vries T. J., Hogenboom F., Mulder A. H., Schoffelmeer A. N. Ontogeny of mu-, delta- and kappa-opioid receptors mediating inhibition of neurotransmitter release and adenylate cyclase activity in rat brain. Brain Res Dev Brain Res. 1990 Jun 1;54(1):63–69. doi: 10.1016/0165-3806(90)90065-7. [DOI] [PubMed] [Google Scholar]
- Girard J., Perdereau D., Narkewicz M., Coupé C., Ferré P., Decaux J. F., Bossard P. Hormonal regulation of liver phosphoenolpyruvate carboxykinase and glucokinase gene expression at weaning in the rat. Biochimie. 1991 Jan;73(1):71–76. doi: 10.1016/0300-9084(91)90077-e. [DOI] [PubMed] [Google Scholar]
- Hart S. L., Slusarczyk H., Smith T. W. The involvement of opioid delta-receptors in stress induced antinociception in mice. Eur J Pharmacol. 1983 Nov 25;95(3-4):283–285. doi: 10.1016/0014-2999(83)90647-7. [DOI] [PubMed] [Google Scholar]
- JANSSEN P. A., NIEMEGEERS C. J., DONY J. G. The inhibitory effect of fentanyl and other morphine-like analgesics on the warm water induced tail withdrawl reflex in rats. Arzneimittelforschung. 1963 Jun;13:502–507. [PubMed] [Google Scholar]
- Jackson H. C., Kitchen I. Swim-stress-induced antinociception in young rats. Br J Pharmacol. 1989 Mar;96(3):617–622. doi: 10.1111/j.1476-5381.1989.tb11860.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James I. F., Goldstein A. Site-directed alkylation of multiple opioid receptors. I. Binding selectivity. Mol Pharmacol. 1984 May;25(3):337–342. [PubMed] [Google Scholar]
- Jiang Q., Takemori A. E., Sultana M., Portoghese P. S., Bowen W. D., Mosberg H. I., Porreca F. Differential antagonism of opioid delta antinociception by [D-Ala2,Leu5,Cys6]enkephalin and naltrindole 5'-isothiocyanate: evidence for delta receptor subtypes. J Pharmacol Exp Ther. 1991 Jun;257(3):1069–1075. [PubMed] [Google Scholar]
- Kitchen I., Kelly M., Viveros M. P. Ontogenesis of kappa-opioid receptors in rat brain using [3H]U-69593 as a binding ligand. Eur J Pharmacol. 1990 Jan 3;175(1):93–96. doi: 10.1016/0014-2999(90)90157-2. [DOI] [PubMed] [Google Scholar]
- Kitchen I., McDowell J., Winder C., Wilson J. M. Low-level lead exposure alters morphine antinociception in neonatal rats. Toxicol Lett. 1984 Aug;22(2):119–123. doi: 10.1016/0378-4274(84)90054-7. [DOI] [PubMed] [Google Scholar]
- Kitchen I., Pinker S. R. Antagonism of swim-stress-induced antinociception by the delta-opioid receptor antagonist naltrindole in adult and young rats. Br J Pharmacol. 1990 Aug;100(4):685–688. doi: 10.1111/j.1476-5381.1990.tb14076.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattia A., Farmer S. C., Takemori A. E., Sultana M., Portoghese P. S., Mosberg H. I., Bowen W. D., Porreca F. Spinal opioid delta antinociception in the mouse: mediation by a 5'-NTII-sensitive delta receptor subtype. J Pharmacol Exp Ther. 1992 Feb;260(2):518–525. [PubMed] [Google Scholar]
- Mattia A., Vanderah T., Mosberg H. I., Porreca F. Lack of antinociceptive cross-tolerance between [D-Pen2, D-Pen5]enkephalin and [D-Ala2]deltorphin II in mice: evidence for delta receptor subtypes. J Pharmacol Exp Ther. 1991 Aug;258(2):583–587. [PubMed] [Google Scholar]
- McDowell J., Kitchen I. Ontogenesis of delta-opioid receptors in rat brain using [3H][D-Pen2,D-Pen5]enkephalin as a binding ligand. Eur J Pharmacol. 1986 Sep 9;128(3):287–289. doi: 10.1016/0014-2999(86)90780-6. [DOI] [PubMed] [Google Scholar]
- Morley J. E., Elson M. K., Levine A. S., Shafer R. B. The effects of stress on central nervous system concentrations of the opioid peptide, dynorphin. Peptides. 1982 Nov-Dec;3(6):901–906. doi: 10.1016/0196-9781(82)90058-4. [DOI] [PubMed] [Google Scholar]
- Muraki T., Nakadate T., Kato R. Developmental changes in the effect of morphine, epinephrine and carbachol on plasma cyclic nucleotide level in rats. Eur J Pharmacol. 1983 Oct 28;94(3-4):203–209. doi: 10.1016/0014-2999(83)90409-0. [DOI] [PubMed] [Google Scholar]
- Panerai A. E., Martini A., Sacerdote P., Mantegazza P. Kappa-receptor antagonist reverse 'non-opioid' stress-induced analgesia. Brain Res. 1984 Jun 18;304(1):153–156. doi: 10.1016/0006-8993(84)90872-2. [DOI] [PubMed] [Google Scholar]
- Paterson S. J., Robson L. E., Kosterlitz H. W. Classification of opioid receptors. Br Med Bull. 1983 Jan;39(1):31–36. doi: 10.1093/oxfordjournals.bmb.a071787. [DOI] [PubMed] [Google Scholar]
- Sofuoglu M., Portoghese P. S., Takemori A. E. Differential antagonism of delta opioid agonists by naltrindole and its benzofuran analog (NTB) in mice: evidence for delta opioid receptor subtypes. J Pharmacol Exp Ther. 1991 May;257(2):676–680. [PubMed] [Google Scholar]
- Sofuoglu M., Portoghese P. S., Takemori A. E. delta-Opioid receptor binding in mouse brain: evidence for heterogeneous binding sites. Eur J Pharmacol. 1992 Jun 5;216(2):273–277. doi: 10.1016/0014-2999(92)90370-j. [DOI] [PubMed] [Google Scholar]
- Spain J. W., Roth B. L., Coscia C. J. Differential ontogeny of multiple opioid receptors (mu, delta, and kappa). J Neurosci. 1985 Mar;5(3):584–588. doi: 10.1523/JNEUROSCI.05-03-00584.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanderah T. W., Wild K. D., Takemori A. E., Sultana M., Portoghese P. S., Bowen W. D., Mosberg H. I., Porreca F. Mediation of swim-stress antinociception by the opioid delta 2 receptor in the mouse. J Pharmacol Exp Ther. 1992 Jul;262(1):190–197. [PubMed] [Google Scholar]
- Vaswani K. K., Richard C. W., 3rd, Tejwani G. A. Cold swim stress-induced changes in the levels of opioid peptides in the rat CNS and peripheral tissues. Pharmacol Biochem Behav. 1988 Jan;29(1):163–168. doi: 10.1016/0091-3057(88)90290-0. [DOI] [PubMed] [Google Scholar]
- Watkins L. R., Mayer D. J. Organization of endogenous opiate and nonopiate pain control systems. Science. 1982 Jun 11;216(4551):1185–1192. doi: 10.1126/science.6281891. [DOI] [PubMed] [Google Scholar]
