Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Jun;109(2):577–580. doi: 10.1111/j.1476-5381.1993.tb13609.x

Kinetic study of the tubular dopamine outward transporter in the rat and dog kidney.

P Soares-da-Silva 1
PMCID: PMC2175669  PMID: 8358558

Abstract

1. The present study has determined the kinetic characteristics of the outflow of dopamine of renal origin in slices of rat and dog renal cortex loaded with exogenous L-dihydroxyphenylalanine (L-DOPA 5 to 5000 microM). 2. In both dog and rat renal tissues the production of dopamine was found to be dependent on the concentration of L-DOPA used and reached its maximum at 2500 microM L-DOPA. The decarboxylation of L-DOPA in rat cortical slices (16.4 +/- 2.6 to 1479.2 +/- 85.2 nmol g-1) was 6 fold that in the dog (2.2 +/- 0.4 to 252.1 +/- 21.2 nmol g-1). In the rat kidney a large amount (approximately 50%) of the dopamine (5.2 +/- 0.6 to 743.4 +/- 58.3 nmol g-1) was found to escape into the incubation medium, whereas in dog renal slices the amount of newly-formed dopamine escaping into the incubation medium (0.7 +/- 0.2 to 46.5 +/- 9.3 nmol g-1) was less than 25% of the total amount of the amine formed. 3. The application of the Michaelis-Menten equation to the net transport of newly-formed dopamine has allowed the identification of a saturable (carrier-mediated transfer) and a non-saturable component (diffusion). The Vmax (nmol g-1 15 min-1) and Km (nM) values for the saturable component were, respectively, 340 +/- 41 and 396 +/- 45 in the rat kidney and 112 +/- 16 and 319 +/- 35 in the dog kidney.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
577

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander R. W., Gill J. R., Jr, Yamabe H., Lovenberg W., Keiser H. R. Effects of dietary sodium and of acute saline infusion on the interrelationship between dopamine excretion and adrenergic activity in man. J Clin Invest. 1974 Jul;54(1):194–200. doi: 10.1172/JCI107743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aperia A., Bertorello A., Seri I. Dopamine causes inhibition of Na+-K+-ATPase activity in rat proximal convoluted tubule segments. Am J Physiol. 1987 Jan;252(1 Pt 2):F39–F45. doi: 10.1152/ajprenal.1987.252.1.F39. [DOI] [PubMed] [Google Scholar]
  3. Baines A. D. Effects of salt intake and renal denervation on catecholamine catabolism and excretion. Kidney Int. 1982 Feb;21(2):316–322. doi: 10.1038/ki.1982.24. [DOI] [PubMed] [Google Scholar]
  4. Ball S. G., Oats N. S., Lee M. R. Urinary dopamine in man and rat: effects of inorganic salts on dopamine excretion. Clin Sci Mol Med. 1978 Aug;55(2):167–173. doi: 10.1042/cs0550167. [DOI] [PubMed] [Google Scholar]
  5. Chan Y. L. Cellular mechanisms of renal tubular transport of I-dopa and its derivatives in the rat: microperfusion studies. J Pharmacol Exp Ther. 1976 Oct;199(1):17–24. [PubMed] [Google Scholar]
  6. Felder C. C., Campbell T., Albrecht F., Jose P. A. Dopamine inhibits Na(+)-H+ exchanger activity in renal BBMV by stimulation of adenylate cyclase. Am J Physiol. 1990 Aug;259(2 Pt 2):F297–F303. doi: 10.1152/ajprenal.1990.259.2.F297. [DOI] [PubMed] [Google Scholar]
  7. Fernandes M. H., Soares-da-Silva P. Effects of MAO-A and MAO-B selective inhibitors Ro 41-1049 and Ro 19-6327 on the deamination of newly formed dopamine in the rat kidney. J Pharmacol Exp Ther. 1990 Dec;255(3):1309–1313. [PubMed] [Google Scholar]
  8. Gesek F. A., Schoolwerth A. C. Effects of alpha-adrenergic agonists on intracellular and intramitochondrial pH in rat proximal nephrons. Am J Physiol. 1989 Oct;257(4 Pt 2):F623–F630. doi: 10.1152/ajprenal.1989.257.4.F623. [DOI] [PubMed] [Google Scholar]
  9. Goldstein D. S., Stull R., Eisenhofer G., Gill J. R., Jr Urinary excretion of dihydroxyphenylalanine and dopamine during alterations of dietary salt intake in humans. Clin Sci (Lond) 1989 May;76(5):517–522. doi: 10.1042/cs0760517. [DOI] [PubMed] [Google Scholar]
  10. Hakim R., Watrous W. M., Fujimoto J. M. The renal tubular transport and metabolism of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in the chicken. J Pharmacol Exp Ther. 1970 Dec;175(3):749–762. [PubMed] [Google Scholar]
  11. Hayashi M., Yamaji Y., Kitajima W., Saruta T. Aromatic L-amino acid decarboxylase activity along the rat nephron. Am J Physiol. 1990 Jan;258(1 Pt 2):F28–F33. doi: 10.1152/ajprenal.1990.258.1.F28. [DOI] [PubMed] [Google Scholar]
  12. Hedge S. S., Ricci A., Amenta F., Lokhandwala M. F. Evidence from functional and autoradiographic studies for the presence of tubular dopamine-1 receptors and their involvement in the renal effects of fenoldopam. J Pharmacol Exp Ther. 1989 Dec;251(3):1237–1245. [PubMed] [Google Scholar]
  13. Jose P. A., Felder R. A., Holloway R. R., Eisner G. M. Dopamine receptors modulate sodium excretion in denervated kidney. Am J Physiol. 1986 Jun;250(6 Pt 2):F1033–F1038. doi: 10.1152/ajprenal.1986.250.6.F1033. [DOI] [PubMed] [Google Scholar]
  14. Jose P. A., Raymond J. R., Bates M. D., Aperia A., Felder R. A., Carey R. M. The renal dopamine receptors. J Am Soc Nephrol. 1992 Feb;2(8):1265–1278. doi: 10.1681/ASN.V281265. [DOI] [PubMed] [Google Scholar]
  15. Mahnensmith R. L., Aronson P. S. The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes. Circ Res. 1985 Jun;56(6):773–788. doi: 10.1161/01.res.56.6.773. [DOI] [PubMed] [Google Scholar]
  16. RENNICK B. R., PRYOR M. Z. EFFECTS OF AUTONOMIC DRUGS ON RENAL TUBULAR TRANSPORT OF CATECHOLAMINES IN THE CHICKEN. J Pharmacol Exp Ther. 1965 May;148:262–269. [PubMed] [Google Scholar]
  17. Ross C. R., Holohan P. D. Transport of organic anions and cations in isolated renal plasma membranes. Annu Rev Pharmacol Toxicol. 1983;23:65–85. doi: 10.1146/annurev.pa.23.040183.000433. [DOI] [PubMed] [Google Scholar]
  18. Seri I., Kone B. C., Gullans S. R., Aperia A., Brenner B. M., Ballermann B. J. Influence of Na+ intake on dopamine-induced inhibition of renal cortical Na(+)-K(+)-ATPase. Am J Physiol. 1990 Jan;258(1 Pt 2):F52–F60. doi: 10.1152/ajprenal.1990.258.1.F52. [DOI] [PubMed] [Google Scholar]
  19. Siragy H. M., Felder R. A., Howell N. L., Chevalier R. L., Peach M. J., Carey R. M. Evidence that intrarenal dopamine acts as a paracrine substance at the renal tubule. Am J Physiol. 1989 Sep;257(3 Pt 2):F469–F477. doi: 10.1152/ajprenal.1989.257.3.F469. [DOI] [PubMed] [Google Scholar]
  20. Soares-da-Silva P. Actin cytoskeleton, tubular sodium and the renal synthesis of dopamine. Biochem Pharmacol. 1992 Nov 3;44(9):1883–1886. doi: 10.1016/0006-2952(92)90085-w. [DOI] [PubMed] [Google Scholar]
  21. Soares-da-Silva P., Fernandes M. H., Albino-Teixeira A., Azevedo I., Pestana M. Brief transient ischemia induces long-term depletion of norepinephrine without affecting the aromatic amino acid decarboxylase and monoamine oxidase activities in the rat kidney. J Pharmacol Exp Ther. 1992 Feb;260(2):902–908. [PubMed] [Google Scholar]
  22. Soares-da-Silva P., Fernandes M. H. Effect of alpha-human atrial natriuretic peptide on the synthesis of dopamine in the rat kidney. Br J Pharmacol. 1992 Apr;105(4):869–874. doi: 10.1111/j.1476-5381.1992.tb09070.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Soares-da-Silva P., Fernandes M. H. Inhibitory effects of guanosine 3':5'-cyclic monophosphate on the synthesis of dopamine in the rat kidney. Br J Pharmacol. 1991 Aug;103(4):1923–1927. doi: 10.1111/j.1476-5381.1991.tb12353.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Soares-da-Silva P., Fernandes M. H., Pestana M. Studies on the role of sodium on the synthesis of dopamine in the rat kidney. J Pharmacol Exp Ther. 1993 Jan;264(1):406–414. [PubMed] [Google Scholar]
  25. Soares-da-Silva P., Fernandes M. H. Regulation of dopamine synthesis in the rat kidney. J Auton Pharmacol. 1990;10 (Suppl 1):s25–s30. doi: 10.1111/j.1474-8673.1990.tb00224.x. [DOI] [PubMed] [Google Scholar]
  26. Soares-da-Silva P., Fernandes M. H. Sodium-dependence and ouabain-sensitivity of the synthesis of dopamine in renal tissues of the rat. Br J Pharmacol. 1992 Apr;105(4):811–816. doi: 10.1111/j.1476-5381.1992.tb09062.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Soares-da-Silva P. Renal tubular dopamine outward transfer during Na(+)-H+ exchange activation by alpha 1- and alpha 2-adrenoceptor agonists. Br J Pharmacol. 1993 Jun;109(2):569–576. doi: 10.1111/j.1476-5381.1993.tb13608.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wedeen R. P., Weiner B. The distribution of p-aminohippuric acid in rat kidney slices. I. Tubular localization. Kidney Int. 1973 Apr;3(4):205–213. doi: 10.1038/ki.1973.33. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES