Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Jun;109(2):411–414. doi: 10.1111/j.1476-5381.1993.tb13584.x

Selective MPP+ uptake into synaptic dopamine vesicles: possible involvement in MPTP neurotoxicity.

M Del Zompo 1, M P Piccardi 1, S Ruiu 1, M Quartu 1, G L Gessa 1, A Vaccari 1
PMCID: PMC2175677  PMID: 8102929

Abstract

1. In the present study we provide evidence for a saturable, Mg2+/ATP- and temperature-dependent, tetrabenazine-, dopamine-, and amphetamine-sensitive uptake of 1-methyl-4-phenylpyridinium ion (MPP+) in synaptic vesicles from mouse striatum. 2. Similarity in the properties of the vesicular uptake suggests that in the striatum dopamine and MPP+ share the vesicular carrier. 3. The presence of MPP+ vesicular uptake in dopamine-rich regions such as striatum, olfactory, tubercles and hypothalamus, as well as its absence in cerebellum, cortex and pons-medulla, suggest that monoamine vesicular carriers differ between highly and poorly dopamine-innervated regions. 4. The restriction of active MPP+ uptake to the dopaminergic regions, which reflects the previously shown distribution of [3H]-MPP+ binding sites in mouse brain membranes, indicates MPP+ as a marker of the vesicular carrier for dopamine in dopaminergic neurones. 5. A role in MPP+ neurotoxicity is suggested for this region-specific, vesicular storage of the toxin.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbeau A., Roy M., Bernier G., Campanella G., Paris S. Ecogenetics of Parkinson's disease: prevalence and environmental aspects in rural areas. Can J Neurol Sci. 1987 Feb;14(1):36–41. doi: 10.1017/s0317167100026147. [DOI] [PubMed] [Google Scholar]
  2. Burns R. S., Chiueh C. C., Markey S. P., Ebert M. H., Jacobowitz D. M., Kopin I. J. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4546–4550. doi: 10.1073/pnas.80.14.4546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Calne D. B., Langston J. W. Aetiology of Parkinson's disease. Lancet. 1983 Dec 24;2(8365-66):1457–1459. doi: 10.1016/s0140-6736(83)90802-4. [DOI] [PubMed] [Google Scholar]
  4. Davis G. C., Williams A. C., Markey S. P., Ebert M. H., Caine E. D., Reichert C. M., Kopin I. J. Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res. 1979 Dec;1(3):249–254. doi: 10.1016/0165-1781(79)90006-4. [DOI] [PubMed] [Google Scholar]
  5. Del Zompo M., Piccardi M. P., Ruiu S., Corsini G. U., Vaccari A. Characterization of a putatively vesicular binding site for [3H]MPP+ in mouse striatal membranes. Brain Res. 1992 Feb 7;571(2):354–357. doi: 10.1016/0006-8993(92)90677-2. [DOI] [PubMed] [Google Scholar]
  6. Erickson J. D., Masserano J. M., Barnes E. M., Ruth J. A., Weiner N. Chloride ion increases [3H]dopamine accumulation by synaptic vesicles purified from rat striatum: inhibition by thiocyanate ion. Brain Res. 1990 May 14;516(1):155–160. doi: 10.1016/0006-8993(90)90912-u. [DOI] [PubMed] [Google Scholar]
  7. Glowinski J., Iversen L. L. Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem. 1966 Aug;13(8):655–669. doi: 10.1111/j.1471-4159.1966.tb09873.x. [DOI] [PubMed] [Google Scholar]
  8. Heffner T. G., Hartman J. A., Seiden L. S. A rapid method for the regional dissection of the rat brain. Pharmacol Biochem Behav. 1980 Sep;13(3):453–456. doi: 10.1016/0091-3057(80)90254-3. [DOI] [PubMed] [Google Scholar]
  9. Heikkila R. E., Hess A., Duvoisin R. C. Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Science. 1984 Jun 29;224(4656):1451–1453. doi: 10.1126/science.6610213. [DOI] [PubMed] [Google Scholar]
  10. Javitch J. A., D'Amato R. J., Strittmatter S. M., Snyder S. H. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2173–2177. doi: 10.1073/pnas.82.7.2173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johannessen J. N. A model of chronic neurotoxicity: long-term retention of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) within catecholaminergic neurons. Neurotoxicology. 1991 Summer;12(2):285–302. [PubMed] [Google Scholar]
  12. Johannessen J. N., Chiueh C. C., Burns R. S., Markey S. P. Differences in the metabolism of MPTP in the rodent and primate parallel differences in sensitivity to its neurotoxic effects. Life Sci. 1985 Jan 21;36(3):219–224. doi: 10.1016/0024-3205(85)90062-1. [DOI] [PubMed] [Google Scholar]
  13. Nicklas W. J., Vyas I., Heikkila R. E. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci. 1985 Jul 1;36(26):2503–2508. doi: 10.1016/0024-3205(85)90146-8. [DOI] [PubMed] [Google Scholar]
  14. Panagopoulos N. T., Papadopoulos G. C., Matsokis N. A. Dopaminergic innervation and binding in the rat cerebellum. Neurosci Lett. 1991 Sep 16;130(2):208–212. doi: 10.1016/0304-3940(91)90398-d. [DOI] [PubMed] [Google Scholar]
  15. Philippu A., Beyer J. Dopamine and noradrenaline transport into subcellular vesicles of the striatum. Naunyn Schmiedebergs Arch Pharmacol. 1973;278(4):387–402. doi: 10.1007/BF00501482. [DOI] [PubMed] [Google Scholar]
  16. Ramsay R. R., Singer T. P. Energy-dependent uptake of N-methyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria. J Biol Chem. 1986 Jun 15;261(17):7585–7587. [PubMed] [Google Scholar]
  17. Scherman D., Darchen F., Desnos C., Henry J. P. 1-Methyl-4-phenylpyridinium is a substrate of the vesicular monoamine uptake system of chromaffin granules. Eur J Pharmacol. 1988 Feb 9;146(2-3):359–360. doi: 10.1016/0014-2999(88)90317-2. [DOI] [PubMed] [Google Scholar]
  18. Vaccari A., Del Zompo M., Melis F., Gessa G. L., Rossetti Z. L. Interaction of 1-methyl-4-phenylpyridinium ion and tyramine with a site putatively involved in the striatal vesicular release of dopamine. Br J Pharmacol. 1991 Nov;104(3):573–574. doi: 10.1111/j.1476-5381.1991.tb12470.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Westerink B. H., de Vries J. B. On the origin of dopamine and its metabolite in predominantly noradrenergic innervated brain areas. Brain Res. 1985 Mar 18;330(1):164–166. doi: 10.1016/0006-8993(85)90020-4. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES