Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Jun;109(2):299–307. doi: 10.1111/j.1476-5381.1993.tb13570.x

High-affinity uptake of noradrenaline in postsynaptic neurones.

S al-Damluji 1, L Z Krsmanovic 1, K J Catt 1
PMCID: PMC2175689  PMID: 8358534

Abstract

1. Neurotransmitters released from nerve endings are inactivated by re-uptake into the presynaptic nerve terminals and possibly into neighbouring glial cells. While analysing the functional properties of alpha 1-adrenoceptors in the hypothalamus, we observed a high-affinity uptake process for noradrenaline in postsynaptic peptidergic neurones. 2. In primary hypothalamic cell cultures and in a hypothalamic neuronal cell line, [3H]-prazosin bound with high affinity and was displaced by unlabelled prazosin in concentrations of 10(-10) to 10(-7) M. However, at concentrations of unlabelled prazosin above 10(-7) M, there was a paradoxical increase in apparent [3H]-prazosin binding. 3. Methoxamine, an alpha 1-adrenoceptor ligand that is not subject to significant neuronal uptake, displaced [3H]-prazosin but did not cause the paradoxical increase in the apparent binding of [3H]-prazosin. Cooling the cells to 4 degrees C reduced the total amount of prazosin associated with the cells; under these conditions, methoxamine almost completely inhibited [3H]-prazosin binding to the cells. 4. In the presence of desipramine (DMI), unlabelled prazosin displaced [3H]-prazosin as before, but no paradoxical increase in apparent binding was seen above 10(-7) M. 5. The paradoxical increase of [3H]-prazosin binding was not observed in membrane preparations of hypothalamic neurones. These findings indicated that the paradoxical increase in apparent [3H]-prazosin binding was due to a cellular uptake process that becomes evident at high concentrations of the ligand. 6. DMI (10(-5) M) had no effect on the specific binding of [3H]-prazosin.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
299

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod J. Noradrenaline: fate and control of its biosynthesis. Science. 1971 Aug 13;173(3997):598–606. doi: 10.1126/science.173.3997.598. [DOI] [PubMed] [Google Scholar]
  2. Barraclough C. A., Wise P. M. The role of catecholamines in the regulation of pituitary luteinizing hormone and follicle-stimulating hormone secretion. Endocr Rev. 1982 Winter;3(1):91–119. doi: 10.1210/edrv-3-1-91. [DOI] [PubMed] [Google Scholar]
  3. Bobik A., Campbell J. H., Little P. J. Desensitization of the alpha 1 adrenoceptor system in vascular smooth muscle. Biochem Pharmacol. 1984 Apr 1;33(7):1143–1145. doi: 10.1016/0006-2952(84)90527-6. [DOI] [PubMed] [Google Scholar]
  4. Bogdanski D. F., Brodie B. B. Role of sodium and potassium ions in storage of norepinephrine by sympathetic nerve endings. Life Sci. 1966 Sep;5(17):1563–1569. doi: 10.1016/0024-3205(66)91025-3. [DOI] [PubMed] [Google Scholar]
  5. Bouloux P., Perrett D., Besser G. M. Methodological considerations in the determination of plasma catecholamines by high-performance liquid chromatography with electrochemical detection. Ann Clin Biochem. 1985 Mar;22(Pt 2):194–203. doi: 10.1177/000456328502200217. [DOI] [PubMed] [Google Scholar]
  6. Burgen A. S., Iversen L. L. The inhibition of noradrenaline uptake by sympathomimetic amines in the rat isolated heart. Br J Pharmacol Chemother. 1965 Aug;25(1):34–49. doi: 10.1111/j.1476-5381.1965.tb01754.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bönisch H. The transport of (+)-amphetamine by the neuronal noradrenaline carrier. Naunyn Schmiedebergs Arch Pharmacol. 1984 Oct;327(4):267–272. doi: 10.1007/BF00506235. [DOI] [PubMed] [Google Scholar]
  8. Clarke M. J., Lowry P., Gillies G. Assessment of corticotropin-releasing factor, vasopressin and somatostatin secretion by fetal hypothalamic neurons in culture. Neuroendocrinology. 1987 Aug;46(2):147–154. doi: 10.1159/000124812. [DOI] [PubMed] [Google Scholar]
  9. Cotecchia S., Leeb-Lundberg L. M., Hagen P. O., Lefkowitz R. J., Caron M. G. Phorbol ester effects on alpha 1-adrenoceptor binding and phosphatidylinositol metabolism in cultured vascular smooth muscle cells. Life Sci. 1985 Dec 23;37(25):2389–2398. doi: 10.1016/0024-3205(85)90106-7. [DOI] [PubMed] [Google Scholar]
  10. Cotecchia S., Schwinn D. A., Randall R. R., Lefkowitz R. J., Caron M. G., Kobilka B. K. Molecular cloning and expression of the cDNA for the hamster alpha 1-adrenergic receptor. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7159–7163. doi: 10.1073/pnas.85.19.7159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Coyle J. T., Axelrod J. Development of the uptake and storage of L-( 3 H)norepinephrine in the rat brain. J Neurochem. 1971 Nov;18(11):2061–2075. doi: 10.1111/j.1471-4159.1971.tb05065.x. [DOI] [PubMed] [Google Scholar]
  12. Cummings S., Seybold V. Relationship of alpha-1- and alpha-2-adrenergic-binding sites to regions of the paraventricular nucleus of the hypothalamus containing corticotropin-releasing factor and vasopressin neurons. Neuroendocrinology. 1988 Jun;47(6):523–532. doi: 10.1159/000124965. [DOI] [PubMed] [Google Scholar]
  13. Cunningham E. T., Jr, Sawchenko P. E. Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J Comp Neurol. 1988 Aug 1;274(1):60–76. doi: 10.1002/cne.902740107. [DOI] [PubMed] [Google Scholar]
  14. Drew G. M. Effects of alpha-adrenoceptor agonists and antagonists on pre- and postsynaptically located alpha-adrenoceptors. Eur J Pharmacol. 1976 Apr;36(2):313–320. doi: 10.1016/0014-2999(76)90084-4. [DOI] [PubMed] [Google Scholar]
  15. GLOWINSKI J., AXELROD J. INHIBITION OF UPTAKE OF TRITIATED-NORADRENALINE IN THE INTACT RAT BRAIN BY IMIPRAMINE AND STRUCTURALLY RELATED COMPOUNDS. Nature. 1964 Dec 26;204:1318–1319. doi: 10.1038/2041318a0. [DOI] [PubMed] [Google Scholar]
  16. Graefe K. H., Bönisch H., Keller B. Saturation kinetics of the adrenergic neurone uptake system in the perfused rabbit heart. A new method for determination of initial rates of amine uptake. Naunyn Schmiedebergs Arch Pharmacol. 1978 May;302(3):263–273. doi: 10.1007/BF00508295. [DOI] [PubMed] [Google Scholar]
  17. Graefe K. H., Henseling M. Neuronal and extraneuronal uptake and metabolism of catecholamines. Gen Pharmacol. 1983;14(1):27–33. doi: 10.1016/0306-3623(83)90058-7. [DOI] [PubMed] [Google Scholar]
  18. Henseling M. Kinetic constants for uptake and metabolism of 3H-(-)noradrenaline in rabbit aorta. Possible falsification of the constants by diffusion barriers within the vessel wall. Naunyn Schmiedebergs Arch Pharmacol. 1983 Jun;323(1):12–23. doi: 10.1007/BF00498822. [DOI] [PubMed] [Google Scholar]
  19. Hoffman G. E., Wray S., Goldstein M. Relationship of catecholamines and LHRH: light microscopic study. Brain Res Bull. 1982 Jul-Dec;9(1-6):417–430. doi: 10.1016/0361-9230(82)90152-6. [DOI] [PubMed] [Google Scholar]
  20. IVERSEN L. L. THE UPTAKE OF NORADRENALINE BY THE ISOLATED PERFUSED RAT HEART. Br J Pharmacol Chemother. 1963 Dec;21:523–537. doi: 10.1111/j.1476-5381.1963.tb02020.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Iversen L. L. Inhibition of catecholamine uptake by 6-hydroxydopamine in rat brain. Eur J Pharmacol. 1970;10(3):408–410. doi: 10.1016/0014-2999(70)90215-3. [DOI] [PubMed] [Google Scholar]
  22. Iversen L. L., Kravitz E. A. Sodium dependence of transmitter uptake at adrenergic nerve terminals. Mol Pharmacol. 1966 Jul;2(4):360–362. [PubMed] [Google Scholar]
  23. Iversen L. L., Salt P. J. Inhibition of catecholamine Uptake-2 by steroids in the isolated rat heart. Br J Pharmacol. 1970 Nov;40(3):528–530. doi: 10.1111/j.1476-5381.1970.tb10637.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jonsson G., Sachs C. Effects of 6-hydroxydopamine on the uptake and storage of noradrenaline in sympathetic adrenergic neurons. Eur J Pharmacol. 1970 Feb;9(2):141–155. doi: 10.1016/0014-2999(70)90293-1. [DOI] [PubMed] [Google Scholar]
  25. Kostrzewa R. M., Jacobowitz D. M. Pharmacological actions of 6-hydroxydopamine. Pharmacol Rev. 1974 Sep;26(3):199–288. [PubMed] [Google Scholar]
  26. Krsmanović L. Z., Stojilković S. S., Balla T., al-Damluji S., Weiner R. I., Catt K. J. Receptors and neurosecretory actions of endothelin in hypothalamic neurons. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11124–11128. doi: 10.1073/pnas.88.24.11124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Leibowitz S. F., Jhanwar-Uniyal M., Dvorkin B., Makman M. H. Distribution of alpha-adrenergic, beta-adrenergic and dopaminergic receptors in discrete hypothalamic areas of rat. Brain Res. 1982 Feb 4;233(1):97–114. doi: 10.1016/0006-8993(82)90933-7. [DOI] [PubMed] [Google Scholar]
  28. Liposits Z., Sherman D., Phelix C., Paull W. K. A combined light and electron microscopic immunocytochemical method for the simultaneous localization of multiple tissue antigens. Tyrosine hydroxylase immunoreactive innervation of corticotropin releasing factor synthesizing neurons in the paraventricular nucleus of the rat. Histochemistry. 1986;85(2):95–106. doi: 10.1007/BF00491754. [DOI] [PubMed] [Google Scholar]
  29. Loudes C., Faivre-Bauman A., Tixier-Vidal A. Techniques for culture of hypothalamic neurons. Methods Enzymol. 1983;103:313–334. doi: 10.1016/s0076-6879(83)03021-9. [DOI] [PubMed] [Google Scholar]
  30. Mellon P. L., Windle J. J., Goldsmith P. C., Padula C. A., Roberts J. L., Weiner R. I. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron. 1990 Jul;5(1):1–10. doi: 10.1016/0896-6273(90)90028-e. [DOI] [PubMed] [Google Scholar]
  31. Müller E. E. Neural control of somatotropic function. Physiol Rev. 1987 Jul;67(3):962–1053. doi: 10.1152/physrev.1987.67.3.962. [DOI] [PubMed] [Google Scholar]
  32. Pacholczyk T., Blakely R. D., Amara S. G. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature. 1991 Mar 28;350(6316):350–354. doi: 10.1038/350350a0. [DOI] [PubMed] [Google Scholar]
  33. Puymirat J., Barret A., Picart R., Vigny A., Loudes C., Faivre-Bauman A., Tixier-Vidal A. Triiodothyronine enhances the morphological maturation of dopaminergic neurons from fetal mouse hypothalamus cultured in serum-free medium. Neuroscience. 1983 Nov;10(3):801–810. doi: 10.1016/0306-4522(83)90217-8. [DOI] [PubMed] [Google Scholar]
  34. Regan J. W., Kobilka T. S., Yang-Feng T. L., Caron M. G., Lefkowitz R. J., Kobilka B. K. Cloning and expression of a human kidney cDNA for an alpha 2-adrenergic receptor subtype. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6301–6305. doi: 10.1073/pnas.85.17.6301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ross S. B., Gosztonyi T. On the mechanism of the accumulation of 3H-bretylium in peripheral sympathetic nerves. Naunyn Schmiedebergs Arch Pharmacol. 1975;288(2-3):283–293. doi: 10.1007/BF00500533. [DOI] [PubMed] [Google Scholar]
  36. STONE C. A., PORTER C. C., STAVORSKI J. M., LUDDEN C. T., TOTARO J. A. ANTAGONISM OF CERTAIN EFFECTS OF CATECHOLAMINE-DEPLETING AGENTS BY ANTIDEPRESSANT AND RELATED DRUGS. J Pharmacol Exp Ther. 1964 May;144:196–204. [PubMed] [Google Scholar]
  37. Salt P. J. Inhibition of noradrenaline uptake 2 in the isolated rat heart by steroids, clonidine and methoxylated phenylethylamines. Eur J Pharmacol. 1972 Dec;20(3):329–340. doi: 10.1016/0014-2999(72)90194-x. [DOI] [PubMed] [Google Scholar]
  38. Sammet S., Graefe K. H. Kinetic analysis of the interaction between noradrenaline and Na+ in neuronal uptake: kinetic evidence for CO-transport. Naunyn Schmiedebergs Arch Pharmacol. 1979 Nov;309(2):99–107. doi: 10.1007/BF00501216. [DOI] [PubMed] [Google Scholar]
  39. Sawchenko P. E., Swanson L. W. The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res. 1982 Nov;257(3):275–325. doi: 10.1016/0165-0173(82)90010-8. [DOI] [PubMed] [Google Scholar]
  40. Schwinn D. A., Lomasney J. W., Lorenz W., Szklut P. J., Fremeau R. T., Jr, Yang-Feng T. L., Caron M. G., Lefkowitz R. J., Cotecchia S. Molecular cloning and expression of the cDNA for a novel alpha 1-adrenergic receptor subtype. J Biol Chem. 1990 May 15;265(14):8183–8189. [PubMed] [Google Scholar]
  41. Shoemaker W. J., Peterfreund R. A., Vale W. Methodological considerations in culturing peptidergic neurons. Methods Enzymol. 1983;103:347–362. doi: 10.1016/s0076-6879(83)03023-2. [DOI] [PubMed] [Google Scholar]
  42. Silverman A. J., Oldfield B., Hou-Yu A., Zimmerman E. A. The noradrenergic innervation of vasopressin neurons in the paraventricular nucleus of the hypothalamus: an ultrastructural study using radioautography and immunocytochemistry. Brain Res. 1985 Jan 28;325(1-2):215–229. doi: 10.1016/0006-8993(85)90318-x. [DOI] [PubMed] [Google Scholar]
  43. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  44. Snyder S. H., Coyle J. T. Regional differences in H3-norepinephrine and H3-dopamine uptake into rat brain homogenates. J Pharmacol Exp Ther. 1969 Jan;165(1):78–86. [PubMed] [Google Scholar]
  45. Trendelenburg U., Maxwell R. A., Pluchino S. Methoxamine as a tool to assess the importance of intraneuronal uptake of l-norepinephrine in the cat's nictitating membrane. J Pharmacol Exp Ther. 1970 Mar;172(1):91–99. [PubMed] [Google Scholar]
  46. U'Prichard D. C., Greenberg D. A., Sheehan P. P., Snyder S. H. Tricyclic antidepressants: therapeutic properties and affinity for alpha-noradrenergic receptor binding sites in the brain. Science. 1978 Jan 13;199(4325):197–198. doi: 10.1126/science.202024. [DOI] [PubMed] [Google Scholar]
  47. VOGT M. The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J Physiol. 1954 Mar 29;123(3):451–481. doi: 10.1113/jphysiol.1954.sp005064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wetsel W. C., Valença M. M., Merchenthaler I., Liposits Z., López F. J., Weiner R. I., Mellon P. L., Negro-Vilar A. Intrinsic pulsatile secretory activity of immortalized luteinizing hormone-releasing hormone-secreting neurons. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4149–4153. doi: 10.1073/pnas.89.9.4149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. White A., Smith H., Hoadley M., Dobson S. H., Ratcliffe J. G. Clinical evaluation of a two-site immunoradiometric assay for adrenocorticotrophin in unextracted human plasma using monoclonal antibodies. Clin Endocrinol (Oxf) 1987 Jan;26(1):41–51. doi: 10.1111/j.1365-2265.1987.tb03637.x. [DOI] [PubMed] [Google Scholar]
  50. Wikberg J. E., Akers M., Caron M. G., Hagen P. O. Norepinephrine-induced down regulation of alpha 1 adrenergic receptors in cultured rabbit aorta smooth muscle cells. Life Sci. 1983 Oct 3;33(14):1409–1417. doi: 10.1016/0024-3205(83)90824-x. [DOI] [PubMed] [Google Scholar]
  51. Wilkinson M., Gibson C. J., Bressler B. H., Inman D. R. Hypothalamic neurons in dissociated cell culture. Brain Res. 1974 Dec 20;82(1):129–138. doi: 10.1016/0006-8993(74)90898-1. [DOI] [PubMed] [Google Scholar]
  52. al-Damluji S. Adrenergic mechanisms in the control of corticotrophin secretion. J Endocrinol. 1988 Oct;119(1):5–14. doi: 10.1677/joe.0.1190005. [DOI] [PubMed] [Google Scholar]
  53. al-Damluji S., Thomas R., White A., Besser M. Vasopressin mediates alpha 1-adrenergic stimulation of adrenocorticotropin secretion. Endocrinology. 1990 Apr;126(4):1989–1995. doi: 10.1210/endo-126-4-1989. [DOI] [PubMed] [Google Scholar]
  54. al-Damluji S., White A., Besser M. Brattleboro rats have deficient adrenocorticotropin responses to activation of central alpha 1-adrenoceptors. Endocrinology. 1990 Dec;127(6):2849–2853. doi: 10.1210/endo-127-6-2849. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES