Abstract
1. The effect of prolonged application of isoprenaline on intracellular free-Mg2+ concentration ([Mg2+]i) was examined by use of 31P-nuclear magnetic resonance (31P-n.m.r.) in rat isolated hearts. Left ventricular pressure (LVP) was simultaneously measured. 2. [Mg2+]i was estimated from the separation of the alpha- and beta-ATP peaks, using the dissociation constant of MgATP 38 microM (established previously). In normal (phosphate-free, Krebs-Henseleit) solution, [Mg2+]i was approximately 0.4 mM. 3. When isoprenaline was applied for 100 min, a transient increase in [Mg2+]i was observed during the initial 25 min, whilst concentrations of ATP ([ATP]) and phosphocreatine ([PCr]) decreased and [Pi] correspondingly increased. During the subsequent 75 min of isoprenaline application, [Mg2+]i decreased below its resting levels. Washout of isoprenaline restored [Mg2+]i and [PCr], but [ATP] remained low. These changes elicited by isoprenaline were not observed in the presence of propranolol, a typical alpha-adrenoceptor blocker. 4. Isoprenaline increased both LVP and heart rate. The increased LVP and heart rate slowly returned to lower values during prolonged application of isoprenaline, but remained higher than those before application. 5. The transient rise in [Mg2+]i elicited by isoprenaline could be attributed to the decrease in [ATP] resulting in a release of Mg2+. The subsequent decrease in [Mg2+]i during the prolonged applications suggests that beta-adrenoceptor stimulation itself facilitates Mg(2+)-extruding mechanism(s).
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agus Z. S., Morad M. Modulation of cardiac ion channels by magnesium. Annu Rev Physiol. 1991;53:299–307. doi: 10.1146/annurev.ph.53.030191.001503. [DOI] [PubMed] [Google Scholar]
- Anderson T. W., Neri L. C., Schreiber G. B., Talbot F. D., Zdrojewski A. Letter: Ischemic heart disease, water hardness and myocardial magnesium. Can Med Assoc J. 1975 Aug 9;113(3):199–203. [PMC free article] [PubMed] [Google Scholar]
- Best P. M., Donaldson S. K., Kerrick W. G. Tension in mechanically disrupted mammalian cardiac cells: effects of magnesium adenosine triphosphate. J Physiol. 1977 Feb;265(1):1–17. doi: 10.1113/jphysiol.1977.sp011702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bock J. L., Wenz B., Gupta R. K. Changes in intracellular Mg adenosine triphosphate and ionized Mg2+ during blood storage: detection by 31P nuclear magnetic resonance spectroscopy. Blood. 1985 Jun;65(6):1526–1530. [PubMed] [Google Scholar]
- Cech S. Y., Maguire M. E. Magnesium regulation of the beta-receptor-adenylate cyclase complex. I. Effects of manganese on receptor binding and cyclase activation. Mol Pharmacol. 1982 Sep;22(2):267–273. [PubMed] [Google Scholar]
- Ebel H., Günther T. Role of magnesium in cardiac disease. J Clin Chem Clin Biochem. 1983 May;21(5):249–265. doi: 10.1515/cclm.1983.21.5.249. [DOI] [PubMed] [Google Scholar]
- Eisner D. A., Elliott A. C., Smith G. L. The contribution of intracellular acidosis to the decline of developed pressure in ferret hearts exposed to cyanide. J Physiol. 1987 Oct;391:99–108. doi: 10.1113/jphysiol.1987.sp016728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Effects of magnesium on contractile activation of skinned cardiac cells. J Physiol. 1975 Aug;249(3):497–517. doi: 10.1113/jphysiol.1975.sp011027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freudenrich C. C., Murphy E., Levy L. A., London R. E., Lieberman M. Intracellular pH modulates cytosolic free magnesium in cultured chicken heart cells. Am J Physiol. 1992 Apr;262(4 Pt 1):C1024–C1030. doi: 10.1152/ajpcell.1992.262.4.C1024. [DOI] [PubMed] [Google Scholar]
- Godt R. E. Calcium-activated tension of skinned muscle fibers of the frog. Dependence on magnesium adenosine triphosphate concentration. J Gen Physiol. 1974 Jun;63(6):722–739. doi: 10.1085/jgp.63.6.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gupta R. K., Gupta P., Moore R. D. NMR studies of intracellular metal ions in intact cells and tissues. Annu Rev Biophys Bioeng. 1984;13:221–246. doi: 10.1146/annurev.bb.13.060184.001253. [DOI] [PubMed] [Google Scholar]
- Gupta R. K., Moore R. D. 31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J Biol Chem. 1980 May 10;255(9):3987–3993. [PubMed] [Google Scholar]
- Headrick J. P., Willis R. J. Adenosine formation and energy metabolism: a 31P-NMR study in isolated rat heart. Am J Physiol. 1990 Mar;258(3 Pt 2):H617–H624. doi: 10.1152/ajpheart.1990.258.3.H617. [DOI] [PubMed] [Google Scholar]
- Headrick J. P., Willis R. J. Effect of inotropic stimulation on cytosolic Mg2+ in isolated rat heart: a 31P magnetic resonance study. Magn Reson Med. 1989 Dec;12(3):328–338. doi: 10.1002/mrm.1910120305. [DOI] [PubMed] [Google Scholar]
- Iyengar R., Birnbaumer L. Hormone receptor modulates the regulatory component of adenylyl cyclase by reducing its requirement for Mg2+ and enhancing its extent of activation by guanine nucleotides. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5179–5183. doi: 10.1073/pnas.79.17.5179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jennings R. B., Steenbergen C., Jr Nucleotide metabolism and cellular damage in myocardial ischemia. Annu Rev Physiol. 1985;47:727–749. doi: 10.1146/annurev.ph.47.030185.003455. [DOI] [PubMed] [Google Scholar]
- Kusuoka H., Marban E. Cellular mechanisms of myocardial stunning. Annu Rev Physiol. 1992;54:243–256. doi: 10.1146/annurev.ph.54.030192.001331. [DOI] [PubMed] [Google Scholar]
- London R. E. Methods for measurement of intracellular magnesium: NMR and fluorescence. Annu Rev Physiol. 1991;53:241–258. doi: 10.1146/annurev.ph.53.030191.001325. [DOI] [PubMed] [Google Scholar]
- Matsuda H. Magnesium gating of the inwardly rectifying K+ channel. Annu Rev Physiol. 1991;53:289–298. doi: 10.1146/annurev.ph.53.030191.001445. [DOI] [PubMed] [Google Scholar]
- Moon R. B., Richards J. H. Determination of intracellular pH by 31P magnetic resonance. J Biol Chem. 1973 Oct 25;248(20):7276–7278. [PubMed] [Google Scholar]
- Murphy E., Freudenrich C. C., Levy L. A., London R. E., Lieberman M. Monitoring cytosolic free magnesium in cultured chicken heart cells by use of the fluorescent indicator Furaptra. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2981–2984. doi: 10.1073/pnas.86.8.2981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakayama S., Seo Y., Takai A., Tomita T., Watari H. Phosphorous compounds studied by 31P nuclear magnetic resonance spectroscopy in the taenia of guinea-pig caecum. J Physiol. 1988 Aug;402:565–578. doi: 10.1113/jphysiol.1988.sp017222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakayama S., Tomita T. Depletion of intracellular free Mg2+ in Mg2(+)- and Ca2(+)-free solution in the taenia isolated from guinea-pig caecum. J Physiol. 1990 Feb;421:363–378. doi: 10.1113/jphysiol.1990.sp017949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romani A., Scarpa A. Hormonal control of Mg2+ transport in the heart. Nature. 1990 Aug 30;346(6287):841–844. doi: 10.1038/346841a0. [DOI] [PubMed] [Google Scholar]
- Rotevatn S., Murphy E., Levy L. A., Raju B., Lieberman M., London R. E. Cytosolic free magnesium concentration in cultured chick heart cells. Am J Physiol. 1989 Jul;257(1 Pt 1):C141–C146. doi: 10.1152/ajpcell.1989.257.1.C141. [DOI] [PubMed] [Google Scholar]
- Shine K. I. Myocardial effects of magnesium. Am J Physiol. 1979 Oct;237(4):H413–H423. doi: 10.1152/ajpheart.1979.237.4.H413. [DOI] [PubMed] [Google Scholar]
- Stitt F. W., Clayton D. G., Crawford M. D., Morris J. N. Clinical and biochemical indicators of cardiovascular disease among men living in hard and soft water areas. Lancet. 1973 Jan 20;1(7795):122–126. doi: 10.1016/s0140-6736(73)90195-5. [DOI] [PubMed] [Google Scholar]
- White R. E., Hartzell H. C. Effects of intracellular free magnesium on calcium current in isolated cardiac myocytes. Science. 1988 Feb 12;239(4841 Pt 1):778–780. doi: 10.1126/science.2448878. [DOI] [PubMed] [Google Scholar]
- White R. E., Hartzell H. C. Magnesium ions in cardiac function. Regulator of ion channels and second messengers. Biochem Pharmacol. 1989 Mar 15;38(6):859–867. doi: 10.1016/0006-2952(89)90272-4. [DOI] [PubMed] [Google Scholar]
