Abstract
1. The effects of 1,3-di(2-tolyl)guanidine (DTG) were examined on the responses of cultured hippocampal neurones to the excitatory amino acid analogues N-methyl-D-aspartate (NMDA), kainate, quisqualate and (RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA). 2. In rat hippocampal neurones loaded with the Ca(2+)-sensitive dye Fura-2, DTG (10-100 microM) produced a concentration-dependent depression of the NMDA-evoked rises in intracellular free calcium ([Ca2+]i), an effect that was not modified by changes in the extracellular glycine concentration. DTG (at 50 and 100 microM) also attenuated, although to a lesser extent, the rises in [Ca2+]i evoked by naturally-derived quisqualate. In contrast, 50 and 100 microM DTG did not depress responses evoked by kainate, AMPA and synthetic, glutamate-free (+)-quisqualate although on occasions DTG enhanced kainate- and AMPA-evoked rises in [Ca2+]i. 3. DTG attenuated NMDA-evoked currents recorded from mouse hippocampal neurones under whole-cell voltage-clamp with an IC50 (mean +/- s.e. mean) of 37 +/- 5 microM at a holding potential of -60 mV. The DTG block of NMDA-evoked responses was not competitive in nature and was not dependent on the extracellular glycine or spermine concentration. The block did, however, exhibit both voltage-, and use-, dependency. The steady-state current evoked by naturally-derived quisqualate was also attenuated by DTG whereas those evoked by kainate and AMPA were not. 4. We conclude that DTG, applied at micromolar concentrations, is a selective NMDA antagonist in cultured hippocampal neurones, the block exhibiting both Mg(2+)- and phencyclidine-like characteristics. Given the nanomolar affinity of DTG for sigma binding sites it is unlikely that the antagonism observed here is mediated by sigma-receptors, but the data emphasize the potential danger of ascribing the functional consequences of DTG administration solely to sigma receptor-mediated events.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aram J. A., Martin D., Tomczyk M., Zeman S., Millar J., Pohler G., Lodge D. Neocortical epileptogenesis in vitro: studies with N-methyl-D-aspartate, phencyclidine, sigma and dextromethorphan receptor ligands. J Pharmacol Exp Ther. 1989 Jan;248(1):320–328. [PubMed] [Google Scholar]
- Ascher P., Nowak L. The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture. J Physiol. 1988 May;399:247–266. doi: 10.1113/jphysiol.1988.sp017078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banker G. A., Cowan W. M. Rat hippocampal neurons in dispersed cell culture. Brain Res. 1977 May 13;126(3):397–342. doi: 10.1016/0006-8993(77)90594-7. [DOI] [PubMed] [Google Scholar]
- Beart P. M., Mercer L. D., Jarrott B. [125I]Ifenprodil: a convenient radioligand for binding and autoradiographic studies of the polyamine-sensitive site of the NMDA receptor. Neurosci Lett. 1991 Apr 1;124(2):187–189. doi: 10.1016/0304-3940(91)90090-g. [DOI] [PubMed] [Google Scholar]
- Benavides J., Peny B., Allen J., Scatton B. Pharmacological characterization of in vivo [3H]lfenprodil binding sites in the mouse brain. J Pharmacol Exp Ther. 1992 Feb;260(2):896–901. [PubMed] [Google Scholar]
- Berry S. C., Dawkins S. L., Lodge D. Comparison of sigma- and kappa-opiate receptor ligands as excitatory amino acid antagonists. Br J Pharmacol. 1984 Sep;83(1):179–185. doi: 10.1111/j.1476-5381.1984.tb10133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertolino M., Vicini S. Voltage-dependent block by strychnine of N-methyl-D-aspartic acid-activated cationic channels in rat cortical neurons in culture. Mol Pharmacol. 1988 Aug;34(2):98–103. [PubMed] [Google Scholar]
- Bobker D. H., Shen K. Z., Surprenant A., Williams J. T. DTG and (+)-3-PPP inhibit a ligand-activated hyperpolarization in mammalian neurons. J Pharmacol Exp Ther. 1989 Dec;251(3):840–845. [PubMed] [Google Scholar]
- Cha J. H., Hollingsworth Z. R., Greenamyre J. T., Young A. B. Contamination of commercially available quisqualic acid by glutamate-like and aspartate-like substances. J Neurosci Methods. 1989 Mar;27(2):143–148. doi: 10.1016/0165-0270(89)90097-6. [DOI] [PubMed] [Google Scholar]
- Church J., Lodge D. Cyclazocine and pentazocine as N-methylaspartate antagonists on cat and rat spinal neurons in vivo. J Pharmacol Exp Ther. 1990 May;253(2):636–645. [PubMed] [Google Scholar]
- Church J., Shacklock J. A., Baimbridge K. G. Dextromethorphan and phencyclidine receptor ligands: differential effects on K(+)- and NMDA-evoked increases in cytosolic free Ca2+ concentration. Neurosci Lett. 1991 Apr 1;124(2):232–234. doi: 10.1016/0304-3940(91)90101-x. [DOI] [PubMed] [Google Scholar]
- Connick J. H., Addae J. I., Nicholson C. D., Stone T. W. The sigma ligand 1,3-di-o-tolylguanidine depresses amino acid-induced excitation non-selectively in rat brain. Eur J Pharmacol. 1992 Apr 22;214(2-3):169–173. doi: 10.1016/0014-2999(92)90115-k. [DOI] [PubMed] [Google Scholar]
- Donevan S. D., Jones S. M., Rogawski M. A. Arcaine blocks N-methyl-D-aspartate receptor responses by an open channel mechanism: whole-cell and single-channel recording studies in cultured hippocampal neurons. Mol Pharmacol. 1992 Apr;41(4):727–735. [PubMed] [Google Scholar]
- Fletcher E. J., Drew C., Lodge D., O'Shaughnessy C. T. Efflux of rubidium in rat cortical synaptosomes is blocked by sigma and dextromethorphan binding site ligands. Neuropharmacology. 1989 Jul;28(7):661–666. doi: 10.1016/0028-3908(89)90148-2. [DOI] [PubMed] [Google Scholar]
- French E. D., Ceci A. Non-competitive N-methyl-D-aspartate antagonists are potent activators of ventral tegmental A10 dopamine neurons. Neurosci Lett. 1990 Nov 13;119(2):159–162. doi: 10.1016/0304-3940(90)90823-r. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hershkowitz N., Rogawski M. A. Tetrahydroaminoacridine block of N-methyl-D-aspartate-activated cation channels in cultured hippocampal neurons. Mol Pharmacol. 1991 May;39(5):592–598. [PubMed] [Google Scholar]
- Holtzman S. G. Opioid- and phencyclidine-like discriminative effects of ditolylguanidine, a selective sigma ligand. J Pharmacol Exp Ther. 1989 Mar;248(3):1054–1062. [PubMed] [Google Scholar]
- Huettner J. E., Bean B. P. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1307–1311. doi: 10.1073/pnas.85.4.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iyengar S., Mick S., Dilworth V., Michel J., Rao T. S., Farah J. M., Wood P. L. Sigma receptors modulate the hypothalamic-pituitary-adrenal (HPA) axis centrally: evidence for a functional interaction with NMDA receptors, in vivo. Neuropharmacology. 1990 Mar;29(3):299–303. doi: 10.1016/0028-3908(90)90017-l. [DOI] [PubMed] [Google Scholar]
- Jahr C. E., Stevens C. F. Glutamate activates multiple single channel conductances in hippocampal neurons. Nature. 1987 Feb 5;325(6104):522–525. doi: 10.1038/325522a0. [DOI] [PubMed] [Google Scholar]
- Karbon E. W., Patch R. J., Pontecorvo M. J., Ferkany J. W. Ifenprodil potently interacts with [3H](+)-3-PPP-labeled sigma binding sites in guinea pig brain membranes. Eur J Pharmacol. 1990 Feb 6;176(2):247–248. doi: 10.1016/0014-2999(90)90538-h. [DOI] [PubMed] [Google Scholar]
- Keana J. F., McBurney R. N., Scherz M. W., Fischer J. B., Hamilton P. N., Smith S. M., Server A. C., Finkbeiner S., Stevens C. F., Jahr C. Synthesis and characterization of a series of diarylguanidines that are noncompetitive N-methyl-D-aspartate receptor antagonists with neuroprotective properties. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5631–5635. doi: 10.1073/pnas.86.14.5631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Largent B. L., Gundlach A. L., Snyder S. H. Pharmacological and autoradiographic discrimination of sigma and phencyclidine receptor binding sites in brain with (+)-[3H]SKF 10,047, (+)-[3H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine and [3H]-1-[1-(2-thienyl)cyclohexyl]piperidine. J Pharmacol Exp Ther. 1986 Aug;238(2):739–748. [PubMed] [Google Scholar]
- Largent B. L., Gundlach A. L., Snyder S. H. Psychotomimetic opiate receptors labeled and visualized with (+)-[3H]3-(3-hydroxyphenyl)-N-(1-propyl)piperidine. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4983–4987. doi: 10.1073/pnas.81.15.4983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacDonald J. F., Bartlett M. C., Mody I., Pahapill P., Reynolds J. N., Salter M. W., Schneiderman J. H., Pennefather P. S. Actions of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones. J Physiol. 1991 Jan;432:483–508. doi: 10.1113/jphysiol.1991.sp018396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacDonald J. F., Mody I., Salter M. W. Regulation of N-methyl-D-aspartate receptors revealed by intracellular dialysis of murine neurones in culture. J Physiol. 1989 Jul;414:17–34. doi: 10.1113/jphysiol.1989.sp017674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malouf A. T., Swearengen E., Chavkin C. Comparison of the actions of phencyclidine and sigma ligands on CA1 hippocampal pyramidal neurons in the rat. Neuropharmacology. 1988 Nov;27(11):1161–1170. doi: 10.1016/0028-3908(88)90012-3. [DOI] [PubMed] [Google Scholar]
- Martin W. R., Eades C. G., Thompson J. A., Huppler R. E., Gilbert P. E. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther. 1976 Jun;197(3):517–532. [PubMed] [Google Scholar]
- Monnet F. P., Debonnel G., Junien J. L., De Montigny C. N-methyl-D-aspartate-induced neuronal activation is selectively modulated by sigma receptors. Eur J Pharmacol. 1990 Apr 25;179(3):441–445. doi: 10.1016/0014-2999(90)90186-a. [DOI] [PubMed] [Google Scholar]
- Monnet F. P., Debonnel G., de Montigny C. In vivo electrophysiological evidence for a selective modulation of N-methyl-D-aspartate-induced neuronal activation in rat CA3 dorsal hippocampus by sigma ligands. J Pharmacol Exp Ther. 1992 Apr;261(1):123–130. [PubMed] [Google Scholar]
- Moriyoshi K., Masu M., Ishii T., Shigemoto R., Mizuno N., Nakanishi S. Molecular cloning and characterization of the rat NMDA receptor. Nature. 1991 Nov 7;354(6348):31–37. doi: 10.1038/354031a0. [DOI] [PubMed] [Google Scholar]
- Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984 Feb 2;307(5950):462–465. doi: 10.1038/307462a0. [DOI] [PubMed] [Google Scholar]
- Olverman H. J., Jones A. W., Watkins J. C. [3H]D-2-amino-5-phosphonopentanoate as a ligand for N-methyl-D-aspartate receptors in the mammalian central nervous system. Neuroscience. 1988 Jul;26(1):1–15. doi: 10.1016/0306-4522(88)90123-6. [DOI] [PubMed] [Google Scholar]
- Pontecorvo M. J., Karbon E. W., Goode S., Clissold D. B., Borosky S. A., Patch R. J., Ferkany J. W. Possible cerebroprotective and in vivo NMDA antagonist activities of sigma agents. Brain Res Bull. 1991 Mar;26(3):461–465. doi: 10.1016/0361-9230(91)90025-f. [DOI] [PubMed] [Google Scholar]
- Quirion R., Bowen W. D., Itzhak Y., Junien J. L., Musacchio J. M., Rothman R. B., Su T. P., Tam S. W., Taylor D. P. A proposal for the classification of sigma binding sites. Trends Pharmacol Sci. 1992 Mar;13(3):85–86. doi: 10.1016/0165-6147(92)90030-a. [DOI] [PubMed] [Google Scholar]
- Ransom R. W., Stec N. L. Cooperative modulation of [3H]MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine, and polyamines. J Neurochem. 1988 Sep;51(3):830–836. doi: 10.1111/j.1471-4159.1988.tb01818.x. [DOI] [PubMed] [Google Scholar]
- Rao T. S., Mick S. J., Cler J. A., Emmett M. R., Dilworth V. M., Contreras P. C., Gray N. M., Wood P. L., Iyengar S. Effects of sigma ligands on mouse cerebellar cyclic guanosine monophosphate (cGMP) levels in vivo: further evidence for a functional modulation of N-methyl-D-aspartate (NMDA) receptor complex-mediated events by sigma ligands. Brain Res. 1991 Oct 4;561(1):43–50. doi: 10.1016/0006-8993(91)90747-j. [DOI] [PubMed] [Google Scholar]
- Reynolds I. J., Miller R. J. Ifenprodil is a novel type of N-methyl-D-aspartate receptor antagonist: interaction with polyamines. Mol Pharmacol. 1989 Nov;36(5):758–765. [PubMed] [Google Scholar]
- Sernagor E., Kuhn D., Vyklicky L., Jr, Mayer M. L. Open channel block of NMDA receptor responses evoked by tricyclic antidepressants. Neuron. 1989 Mar;2(3):1221–1227. doi: 10.1016/0896-6273(89)90306-1. [DOI] [PubMed] [Google Scholar]
- Shalaby I. A., Chenard B. L., Prochniak M. A., Butler T. W. Neuroprotective effects of the N-methyl-D-aspartate receptor antagonists ifenprodil and SL-82,0715 on hippocampal cells in culture. J Pharmacol Exp Ther. 1992 Feb;260(2):925–932. [PubMed] [Google Scholar]
- Singh L., Wong E. H., Kesingland A. C., Tricklebank M. D. Evidence against an involvement of the haloperidol-sensitive sigma recognition site in the discriminative stimulus properties of (+)-N-allylnormetazocine ((+)-SKF 10,047). Br J Pharmacol. 1990 Jan;99(1):145–151. doi: 10.1111/j.1476-5381.1990.tb14668.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sircar R., Nichtenhauser R., Ieni J. R., Zukin S. R. Characterization and autoradiographic visualization of (+)-[3H]SKF10,047 binding in rat and mouse brain: further evidence for phencyclidine/"sigma opiate" receptor commonality. J Pharmacol Exp Ther. 1986 May;237(2):681–688. [PubMed] [Google Scholar]
- Weber E., Sonders M., Quarum M., McLean S., Pou S., Keana J. F. 1,3-Di(2-[5-3H]tolyl)guanidine: a selective ligand that labels sigma-type receptors for psychotomimetic opiates and antipsychotic drugs. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8784–8788. doi: 10.1073/pnas.83.22.8784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong E. H., Kemp J. A., Priestley T., Knight A. R., Woodruff G. N., Iversen L. L. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7104–7108. doi: 10.1073/pnas.83.18.7104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zukin R. S., Zukin S. R. Multiple opiate receptors: emerging concepts. Life Sci. 1981 Dec 28;29(26):2681–2690. doi: 10.1016/0024-3205(81)90527-0. [DOI] [PubMed] [Google Scholar]