Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Aug;109(4):992–997. doi: 10.1111/j.1476-5381.1993.tb13719.x

Acetylcholine-induced endothelium-independent relaxations in monkey isolated superior and inferior caval veins.

S Fukushima 1, T Ohhashi 1
PMCID: PMC2175750  PMID: 8401953

Abstract

1. We examined the effects of acetylcholine (ACh), isoprenaline (Isop) and Ca-ionophore, A23187 on monkey isolated superior (SCV) and inferior caval veins (ICV) with and without intact endothelium, which had been partially contracted by 2 x 10(-6)-5 x 10(-6) M prostaglandin F2 alpha (PGF2 alpha). 2. Low concentrations of ACh (10(-10)-10(-9) M) produced a dose-dependent relaxation in the precontracted venous segments with endothelium. ACh at concentrations more than 10(-7) M elicited a transient contraction followed by a relaxation in these segments. 3. An addition of 5 x 10(-7) M A 23187 induced about 60% of maximum relaxation produced by 10(-5) M sodium nitroprusside (SNP) in each venous segment with endothelium. 4. Isop (10(-10)-10(-5) M) caused a dose-related relaxation in the precontracted caval veins with intact endothelium. 5. Removal of endothelium caused no significant effect on the ACh-induced dual responses but a significant inhibition of the A23187-induced relaxation. 6. Pretreatment with atropine antagonized competitively the ACh-induced relaxations in the endothelium-intact and endothelium-denuded caval veins. The Schild plot analysis showed that the pA2 values of the segments with and without endothelium were 9.72 +/- 0.14 (n = 5) and 10.01 +/- 0.23 (n = 6) in the ICV; and 9.95 +/- 0.20 (n = 5) and 9.70 +/- 0.10 (n = 5) in the SCV, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
992

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ahlner J., Ljusegren M. E., Grundström N., Axelsson K. L. Role of nitric oxide and cyclic GMP as mediators of endothelium-independent neurogenic relaxation in bovine mesenteric artery. Circ Res. 1991 Mar;68(3):756–762. doi: 10.1161/01.res.68.3.756. [DOI] [PubMed] [Google Scholar]
  3. Brayden J. E., Bevan J. A. Neurogenic muscarinic vasodilation in the cat. An example of endothelial cell-independent cholinergic relaxation. Circ Res. 1985 Feb;56(2):205–211. doi: 10.1161/01.res.56.2.205. [DOI] [PubMed] [Google Scholar]
  4. Brayden J. E., Large W. A. Electrophysiological analysis of neurogenic vasodilatation in the isolated lingual artery of the rabbit. Br J Pharmacol. 1986 Sep;89(1):163–171. doi: 10.1111/j.1476-5381.1986.tb11132.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen G. F., Suzuki H. Direct and indirect actions of acetylcholine and histamine on intrapulmonary artery and vein muscles of the rat. Jpn J Physiol. 1989;39(1):51–65. doi: 10.2170/jjphysiol.39.51. [DOI] [PubMed] [Google Scholar]
  6. Cook N. S. The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol Sci. 1988 Jan;9(1):21–28. doi: 10.1016/0165-6147(88)90238-6. [DOI] [PubMed] [Google Scholar]
  7. De Mey J. G., Vanhoutte P. M. Heterogeneous behavior of the canine arterial and venous wall. Importance of the endothelium. Circ Res. 1982 Oct;51(4):439–447. doi: 10.1161/01.res.51.4.439. [DOI] [PubMed] [Google Scholar]
  8. Furchgott R. F. Role of endothelium in responses of vascular smooth muscle. Circ Res. 1983 Nov;53(5):557–573. doi: 10.1161/01.res.53.5.557. [DOI] [PubMed] [Google Scholar]
  9. Furchgott R. F. The role of endothelium in the responses of vascular smooth muscle to drugs. Annu Rev Pharmacol Toxicol. 1984;24:175–197. doi: 10.1146/annurev.pa.24.040184.001135. [DOI] [PubMed] [Google Scholar]
  10. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  11. Furuta T., Shigei T. A regional difference in endothelium-dependent relaxation responses to acetylcholine in the canine venous system. Jpn J Pharmacol. 1987 Jun;44(2):207–210. doi: 10.1254/jjp.44.207. [DOI] [PubMed] [Google Scholar]
  12. Ignarro L. J., Kadowitz P. J. The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol. 1985;25:171–191. doi: 10.1146/annurev.pa.25.040185.001131. [DOI] [PubMed] [Google Scholar]
  13. Kaley G., Rodenburg J. M., Messina E. J., Wolin M. S. Endothelium-associated vasodilators in rat skeletal muscle microcirculation. Am J Physiol. 1989 Mar;256(3 Pt 2):H720–H725. doi: 10.1152/ajpheart.1989.256.3.H720. [DOI] [PubMed] [Google Scholar]
  14. Kenakin T. P. The classification of drugs and drug receptors in isolated tissues. Pharmacol Rev. 1984 Sep;36(3):165–222. [PubMed] [Google Scholar]
  15. Lüscher T. F., Diederich D., Siebenmann R., Lehmann K., Stulz P., von Segesser L., Yang Z. H., Turina M., Grädel E., Weber E. Difference between endothelium-dependent relaxation in arterial and in venous coronary bypass grafts. N Engl J Med. 1988 Aug 25;319(8):462–467. doi: 10.1056/NEJM198808253190802. [DOI] [PubMed] [Google Scholar]
  16. Miller V. M., Vanhoutte P. M. Is nitric oxide the only endothelium-derived relaxing factor in canine femoral veins? Am J Physiol. 1989 Dec;257(6 Pt 2):H1910–H1916. doi: 10.1152/ajpheart.1989.257.6.H1910. [DOI] [PubMed] [Google Scholar]
  17. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  18. POOLE J. C., SANDERS A. G., FLOREY H. W. The regeneration of aortic endothelium. J Pathol Bacteriol. 1958 Jan;75(1):133–143. doi: 10.1002/path.1700750116. [DOI] [PubMed] [Google Scholar]
  19. Pohl U., Dézsi L., Simon B., Busse R. Selective inhibition of endothelium-dependent dilation in resistance-sized vessels in vivo. Am J Physiol. 1987 Aug;253(2 Pt 2):H234–H239. doi: 10.1152/ajpheart.1987.253.2.H234. [DOI] [PubMed] [Google Scholar]
  20. Toda N., Miyazaki M. Angiotensin-induced relaxation in isolated dog renal and cerebral arteries. Am J Physiol. 1981 Feb;240(2):H247–H254. doi: 10.1152/ajpheart.1981.240.2.H247. [DOI] [PubMed] [Google Scholar]
  21. Vanhoutte P. M., Miller V. M. Heterogeneity of endothelium-dependent responses in mammalian blood vessels. J Cardiovasc Pharmacol. 1985;7 (Suppl 3):S12–S23. doi: 10.1097/00005344-198500073-00002. [DOI] [PubMed] [Google Scholar]
  22. Yang Z. H., von Segesser L., Bauer E., Stulz P., Turina M., Lüscher T. F. Different activation of the endothelial L-arginine and cyclooxygenase pathway in the human internal mammary artery and saphenous vein. Circ Res. 1991 Jan;68(1):52–60. doi: 10.1161/01.res.68.1.52. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES