Abstract
1. We examined the effects of acetylcholine (ACh), isoprenaline (Isop) and Ca-ionophore, A23187 on monkey isolated superior (SCV) and inferior caval veins (ICV) with and without intact endothelium, which had been partially contracted by 2 x 10(-6)-5 x 10(-6) M prostaglandin F2 alpha (PGF2 alpha). 2. Low concentrations of ACh (10(-10)-10(-9) M) produced a dose-dependent relaxation in the precontracted venous segments with endothelium. ACh at concentrations more than 10(-7) M elicited a transient contraction followed by a relaxation in these segments. 3. An addition of 5 x 10(-7) M A 23187 induced about 60% of maximum relaxation produced by 10(-5) M sodium nitroprusside (SNP) in each venous segment with endothelium. 4. Isop (10(-10)-10(-5) M) caused a dose-related relaxation in the precontracted caval veins with intact endothelium. 5. Removal of endothelium caused no significant effect on the ACh-induced dual responses but a significant inhibition of the A23187-induced relaxation. 6. Pretreatment with atropine antagonized competitively the ACh-induced relaxations in the endothelium-intact and endothelium-denuded caval veins. The Schild plot analysis showed that the pA2 values of the segments with and without endothelium were 9.72 +/- 0.14 (n = 5) and 10.01 +/- 0.23 (n = 6) in the ICV; and 9.95 +/- 0.20 (n = 5) and 9.70 +/- 0.10 (n = 5) in the SCV, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ahlner J., Ljusegren M. E., Grundström N., Axelsson K. L. Role of nitric oxide and cyclic GMP as mediators of endothelium-independent neurogenic relaxation in bovine mesenteric artery. Circ Res. 1991 Mar;68(3):756–762. doi: 10.1161/01.res.68.3.756. [DOI] [PubMed] [Google Scholar]
- Brayden J. E., Bevan J. A. Neurogenic muscarinic vasodilation in the cat. An example of endothelial cell-independent cholinergic relaxation. Circ Res. 1985 Feb;56(2):205–211. doi: 10.1161/01.res.56.2.205. [DOI] [PubMed] [Google Scholar]
- Brayden J. E., Large W. A. Electrophysiological analysis of neurogenic vasodilatation in the isolated lingual artery of the rabbit. Br J Pharmacol. 1986 Sep;89(1):163–171. doi: 10.1111/j.1476-5381.1986.tb11132.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen G. F., Suzuki H. Direct and indirect actions of acetylcholine and histamine on intrapulmonary artery and vein muscles of the rat. Jpn J Physiol. 1989;39(1):51–65. doi: 10.2170/jjphysiol.39.51. [DOI] [PubMed] [Google Scholar]
- Cook N. S. The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol Sci. 1988 Jan;9(1):21–28. doi: 10.1016/0165-6147(88)90238-6. [DOI] [PubMed] [Google Scholar]
- De Mey J. G., Vanhoutte P. M. Heterogeneous behavior of the canine arterial and venous wall. Importance of the endothelium. Circ Res. 1982 Oct;51(4):439–447. doi: 10.1161/01.res.51.4.439. [DOI] [PubMed] [Google Scholar]
- Furchgott R. F. Role of endothelium in responses of vascular smooth muscle. Circ Res. 1983 Nov;53(5):557–573. doi: 10.1161/01.res.53.5.557. [DOI] [PubMed] [Google Scholar]
- Furchgott R. F. The role of endothelium in the responses of vascular smooth muscle to drugs. Annu Rev Pharmacol Toxicol. 1984;24:175–197. doi: 10.1146/annurev.pa.24.040184.001135. [DOI] [PubMed] [Google Scholar]
- Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
- Furuta T., Shigei T. A regional difference in endothelium-dependent relaxation responses to acetylcholine in the canine venous system. Jpn J Pharmacol. 1987 Jun;44(2):207–210. doi: 10.1254/jjp.44.207. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., Kadowitz P. J. The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol. 1985;25:171–191. doi: 10.1146/annurev.pa.25.040185.001131. [DOI] [PubMed] [Google Scholar]
- Kaley G., Rodenburg J. M., Messina E. J., Wolin M. S. Endothelium-associated vasodilators in rat skeletal muscle microcirculation. Am J Physiol. 1989 Mar;256(3 Pt 2):H720–H725. doi: 10.1152/ajpheart.1989.256.3.H720. [DOI] [PubMed] [Google Scholar]
- Kenakin T. P. The classification of drugs and drug receptors in isolated tissues. Pharmacol Rev. 1984 Sep;36(3):165–222. [PubMed] [Google Scholar]
- Lüscher T. F., Diederich D., Siebenmann R., Lehmann K., Stulz P., von Segesser L., Yang Z. H., Turina M., Grädel E., Weber E. Difference between endothelium-dependent relaxation in arterial and in venous coronary bypass grafts. N Engl J Med. 1988 Aug 25;319(8):462–467. doi: 10.1056/NEJM198808253190802. [DOI] [PubMed] [Google Scholar]
- Miller V. M., Vanhoutte P. M. Is nitric oxide the only endothelium-derived relaxing factor in canine femoral veins? Am J Physiol. 1989 Dec;257(6 Pt 2):H1910–H1916. doi: 10.1152/ajpheart.1989.257.6.H1910. [DOI] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- POOLE J. C., SANDERS A. G., FLOREY H. W. The regeneration of aortic endothelium. J Pathol Bacteriol. 1958 Jan;75(1):133–143. doi: 10.1002/path.1700750116. [DOI] [PubMed] [Google Scholar]
- Pohl U., Dézsi L., Simon B., Busse R. Selective inhibition of endothelium-dependent dilation in resistance-sized vessels in vivo. Am J Physiol. 1987 Aug;253(2 Pt 2):H234–H239. doi: 10.1152/ajpheart.1987.253.2.H234. [DOI] [PubMed] [Google Scholar]
- Toda N., Miyazaki M. Angiotensin-induced relaxation in isolated dog renal and cerebral arteries. Am J Physiol. 1981 Feb;240(2):H247–H254. doi: 10.1152/ajpheart.1981.240.2.H247. [DOI] [PubMed] [Google Scholar]
- Vanhoutte P. M., Miller V. M. Heterogeneity of endothelium-dependent responses in mammalian blood vessels. J Cardiovasc Pharmacol. 1985;7 (Suppl 3):S12–S23. doi: 10.1097/00005344-198500073-00002. [DOI] [PubMed] [Google Scholar]
- Yang Z. H., von Segesser L., Bauer E., Stulz P., Turina M., Lüscher T. F. Different activation of the endothelial L-arginine and cyclooxygenase pathway in the human internal mammary artery and saphenous vein. Circ Res. 1991 Jan;68(1):52–60. doi: 10.1161/01.res.68.1.52. [DOI] [PubMed] [Google Scholar]
