Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Aug;109(4):1008–1013. doi: 10.1111/j.1476-5381.1993.tb13721.x

Tachykinin receptors mediating responses to sensory nerve stimulation and exogenous tachykinins and analogues in the rabbit isolated iris sphincter.

J M Hall 1, D Mitchell 1, I K Morton 1
PMCID: PMC2175754  PMID: 8401912

Abstract

1. We have used selective tachykinin receptor agonists and antagonists to investigate the nature of the receptors mediating responses to endogenous and exogenous tachykinins in the rabbit iris sphincter preparation in vitro. 2. The NK1-selective agonist, substance P methyl ester, induced contraction with a pD2 of 9.16 indicating the presence of NK1 receptors. In confirmation, the NK1-selective antagonist, GR82334, competitively antagonized responses to substance P methyl ester with high affinity (pKB 7.46). 3. NK3 receptors also mediate contraction since NK3-selective agonists exhibited high potency, e.g. the pD2 of [Me-Phe7]-neurokinin B was 9.67, and their responses were not inhibited by GR82334 (10 microM). 4. NK2 receptor activation does not seem to contribute to contraction since the NK2-selective agonist [beta-Ala8]-neurokinin A(4-10) had relatively low potency (pD2 6.43), and the NK2-selective antagonists MEN10207 (1 microM) and L-659,877 (10 microM) were inactive or had low affinity, respectively. 5. GR82334 (1 microM) significantly inhibited responses to electrical field-stimulation of non-adrenergic non-cholinergic sensory nerves (3, 10 and 30 Hz), and caused a rightward shift of the log concentration-response curve to bradykinin (lateral shift ca. 1000 fold). Higher concentrations of GR82334 (10 microM) significantly attenuated responses to capsaicin (1-60 microM) whilst completely abolishing responses to field-stimulation (3, 10 and 30 Hz) and bradykinin (1 nM- 3 microM). 6. In conclusion, NK1 and NK3 receptor activation results in contraction of the rabbit iris sphincter. The contractile response following sensory nerve stimulation by bradykinin, capsaicin and electrical field stimulation results from NK1 receptor activation.

Full text

PDF
1008

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Butler J. M., Hammond B. R. The effects of sensory denervation on the responses of the rabbit eye to prostaglandin E1, bradykinin and substance P. Br J Pharmacol. 1980 Jul;69(3):495–502. doi: 10.1111/j.1476-5381.1980.tb07040.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Denis P., Fardin V., Nordmann J. P., Elena P. P., Laroche L., Saraux H., Rostene W. Localization and characterization of substance P binding sites in rat and rabbit eyes. Invest Ophthalmol Vis Sci. 1991 May;32(6):1894–1902. [PubMed] [Google Scholar]
  3. Drapeau G., d'Orléans-Juste P., Dion S., Rhaleb N. E., Regoli D. Specific agonists for neurokinin B receptors. Eur J Pharmacol. 1987 Apr 29;136(3):401–403. doi: 10.1016/0014-2999(87)90313-x. [DOI] [PubMed] [Google Scholar]
  4. Hagan R. M., Ireland S. J., Jordan C. C., Beresford I. J., Deal M. J., Ward P. Receptor-selective, peptidase-resistant agonists at neurokinin NK-1 and NK-2 receptors: new tools for investigating neurokinin function. Neuropeptides. 1991 Jun;19(2):127–135. doi: 10.1016/0143-4179(91)90142-6. [DOI] [PubMed] [Google Scholar]
  5. Hall J. M., Flowers J. M., Morton I. K. A pharmacological study of NK1 and NK2 tachykinin receptor characteristics in the rat isolated urinary bladder. Br J Pharmacol. 1992 Nov;107(3):777–784. doi: 10.1111/j.1476-5381.1992.tb14523.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hall J. M., Mitchell D., Morton I. K. Neurokinin receptors in the rabbit iris sphincter characterised by novel agonist ligands. Eur J Pharmacol. 1991 Jun 18;199(1):9–14. doi: 10.1016/0014-2999(91)90630-9. [DOI] [PubMed] [Google Scholar]
  7. Holzer P. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience. 1988 Mar;24(3):739–768. doi: 10.1016/0306-4522(88)90064-4. [DOI] [PubMed] [Google Scholar]
  8. Håkanson R., Beding B., Ekman R., Heilig M., Wahlestedt C., Sundler F. Multiple tachykinin pools in sensory nerve fibres in the rabbit iris. Neuroscience. 1987 Jun;21(3):943–950. doi: 10.1016/0306-4522(87)90049-2. [DOI] [PubMed] [Google Scholar]
  9. Håkanson R., Wang Z. Y., Folkers K. Comparison of spantide II and CP-96,345 for blockade of tachykinin-evoked contractions of smooth muscle. Biochem Biophys Res Commun. 1991 Jul 15;178(1):297–301. doi: 10.1016/0006-291x(91)91813-r. [DOI] [PubMed] [Google Scholar]
  10. Maggi C. A., Patacchini R., Giuliani S., Rovero P., Dion S., Regoli D., Giachetti A., Meli A. Competitive antagonists discriminate between NK2 tachykinin receptor subtypes. Br J Pharmacol. 1990 Jul;100(3):589–592. doi: 10.1111/j.1476-5381.1990.tb15851.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maggi C. A., Patacchini R. Tachykinin NK1 receptor in the guinea-pig isolated proximal urethra: characterization by receptor selective agonists and antagonists. Br J Pharmacol. 1992 Aug;106(4):888–892. doi: 10.1111/j.1476-5381.1992.tb14430.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McKnight A. T., Maguire J. J., Elliott N. J., Fletcher A. E., Foster A. C., Tridgett R., Williams B. J., Longmore J., Iversen L. L. Pharmacological specificity of novel, synthetic, cyclic peptides as antagonists at tachykinin receptors. Br J Pharmacol. 1991 Oct;104(2):355–360. doi: 10.1111/j.1476-5381.1991.tb12435.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Muramatsu I., Nakanishi S., Fujiwara M. Comparison of the responses to the sensory neuropeptides, substance P, neurokinin A, neurokinin B and calcitonin gene-related peptide and to trigeminal nerve stimulation in the iris sphincter muscle of the rabbit. Jpn J Pharmacol. 1987 May;44(1):85–92. doi: 10.1254/jjp.44.85. [DOI] [PubMed] [Google Scholar]
  14. Rovero P., Pestellini V., Maggi C. A., Patacchini R., Regoli D., Giachetti A. A highly selective NK-2 tachykinin receptor antagonist containing D-tryptophan. Eur J Pharmacol. 1990 Jan 3;175(1):113–115. doi: 10.1016/0014-2999(90)90161-x. [DOI] [PubMed] [Google Scholar]
  15. Rovero P., Pestellini V., Patacchini R., Giuliani S., Santicioli P., Maggi C. A., Meli A., Giachetti A. A potent and selective agonist for NK-2 tachykinin receptor. Peptides. 1989 May-Jun;10(3):593–595. doi: 10.1016/0196-9781(89)90148-4. [DOI] [PubMed] [Google Scholar]
  16. Too H. P., Unger W. G., Hanley M. R. Evidence for multiple tachykinin receptor subtypes on the rabbit iris sphincter muscle. Mol Pharmacol. 1988 Jan;33(1):64–71. [PubMed] [Google Scholar]
  17. Wang Z. Y., Håkanson R. (+/-)-CP-96,345, a selective tachykinin NK1 receptor antagonist, has non-specific actions on neurotransmission. Br J Pharmacol. 1992 Nov;107(3):762–765. doi: 10.1111/j.1476-5381.1992.tb14520.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wang Z. Y., Håkanson R. Effect of resiniferatoxin on the isolated rabbit iris sphincter muscle: comparison with capsaicin and bradykinin. Eur J Pharmacol. 1992 Mar 24;213(2):235–241. doi: 10.1016/0014-2999(92)90687-y. [DOI] [PubMed] [Google Scholar]
  19. Wang Z. Y., Håkanson R. The electrically evoked, tachykinin-mediated contractile response of the isolated rabbit iris sphincter muscle involves NK1 receptors only. Eur J Pharmacol. 1992 Jun 5;216(2):327–329. doi: 10.1016/0014-2999(92)90380-m. [DOI] [PubMed] [Google Scholar]
  20. Watson S. P., Sandberg B. E., Hanley M. R., Iversen L. L. Tissue selectivity of substance P alkyl esters: suggesting multiple receptors. Eur J Pharmacol. 1983 Jan 28;87(1):77–84. doi: 10.1016/0014-2999(83)90052-3. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES