Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Aug;109(4):987–991. doi: 10.1111/j.1476-5381.1993.tb13718.x

Bacterial endotoxin rapidly stimulates prolonged endothelium-dependent vasodilatation in the rat isolated perfused heart.

A R Baydoun 1, R D Foale 1, G E Mann 1
PMCID: PMC2175763  PMID: 8401952

Abstract

1. The effects of bacterial lipopolysaccharide (Escherichia coli 0111-B4; LPS) on coronary vascular tone were examined in the isolated perfused heart of the rat. The role of nitric oxide and/or prostaglandin products of the cyclo-oxygenase pathway in mediating the actions of LPS were also investigated. 2. Coronary vascular tone was raised and maintained by a continuous perfusion of the thromboxane-mimetic U46619 (5 nM). LPS perfusion (0.1-100 micrograms ml-1) caused a concentration-dependent fall in coronary tone without any significant change in the force of cardiac contractility. 3. At 5 micrograms ml-1, LPS reduced perfusion pressure by 38 +/- 9 mmHg. This effect was rapid in onset, maximal within the first 5 min and sustained for 90 +/- 10 min (n = 6). 4. The vasodilatation induced by LPS was dependent on the presence of an intact endothelium and abolished following endothelial damage caused by air embolism. 5. NG-nitro-L-arginine methylester (L-NAME; 50 microM) or NG-nitro-L-arginine (L-NOARG; 50 microM) blocked the vasodilatation induced by LPS (5 micrograms ml-1). The inhibition caused by these arginine analogues was partially reversed by 1 mM L- but not D-arginine. 6. The vasodilator action of LPS was also completely blocked by the glucocorticoid, dexamethasone (10 microM) but unaffected by indomethacin (10 microM). 7. These results suggest that LPS evokes rapid release of nitric oxide (NO) in the microvasculature of the rat isolated heart presumably via activation of the constitutive L-arginine-NO pathway in the endothelium.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
987

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisaka K., Gross S. S., Griffith O. W., Levi R. NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? Biochem Biophys Res Commun. 1989 Apr 28;160(2):881–886. doi: 10.1016/0006-291x(89)92517-5. [DOI] [PubMed] [Google Scholar]
  2. Amezcua J. L., Palmer R. M., de Souza B. M., Moncada S. Nitric oxide synthesized from L-arginine regulates vascular tone in the coronary circulation of the rabbit. Br J Pharmacol. 1989 Aug;97(4):1119–1124. doi: 10.1111/j.1476-5381.1989.tb12569.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amrani M., O'Shea J., Allen N. J., Harding S. E., Jayakumar J., Pepper J. R., Moncada S., Yacoub M. H. Role of basal release of nitric oxide on coronary flow and mechanical performance of the isolated rat heart. J Physiol. 1992 Oct;456:681–687. doi: 10.1113/jphysiol.1992.sp019361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baydoun A. R., Peers S. H., Cirino G., Woodward B. Effects of endothelin-1 on the rat isolated heart. J Cardiovasc Pharmacol. 1989;13 (Suppl 5):S193–S196. doi: 10.1097/00005344-198900135-00054. [DOI] [PubMed] [Google Scholar]
  5. Baydoun A. R., Peers S. H., Cirino G., Woodward B. Vasodilator action of endothelin-1 in the perfused rat heart. J Cardiovasc Pharmacol. 1990 May;15(5):759–763. doi: 10.1097/00005344-199005000-00011. [DOI] [PubMed] [Google Scholar]
  6. Baydoun A. R., Woodward B. Effects of bradykinin in the rat isolated perfused heart: role of kinin receptors and endothelium-derived relaxing factor. Br J Pharmacol. 1991 Jul;103(3):1829–1833. doi: 10.1111/j.1476-5381.1991.tb09871.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fleming I., Gray G. A., Julou-Schaeffer G., Parratt J. R., Stoclet J. C. Incubation with endotoxin activates the L-arginine pathway in vascular tissue. Biochem Biophys Res Commun. 1990 Sep 14;171(2):562–568. doi: 10.1016/0006-291x(90)91183-s. [DOI] [PubMed] [Google Scholar]
  8. Gardiner S. M., Compton A. M., Bennett T., Palmer R. M., Moncada S. Regional haemodynamic changes during oral ingestion of NG-monomethyl-L-arginine or NG-nitro-L-arginine methyl ester in conscious Brattleboro rats. Br J Pharmacol. 1990 Sep;101(1):10–12. doi: 10.1111/j.1476-5381.1990.tb12079.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ishii K., Chang B., Kerwin J. F., Jr, Huang Z. J., Murad F. N omega-nitro-L-arginine: a potent inhibitor of endothelium-derived relaxing factor formation. Eur J Pharmacol. 1990 Feb 6;176(2):219–223. doi: 10.1016/0014-2999(90)90531-a. [DOI] [PubMed] [Google Scholar]
  10. Kilbourn R. G., Jubran A., Gross S. S., Griffith O. W., Levi R., Adams J., Lodato R. F. Reversal of endotoxin-mediated shock by NG-methyl-L-arginine, an inhibitor of nitric oxide synthesis. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1132–1138. doi: 10.1016/0006-291x(90)91565-a. [DOI] [PubMed] [Google Scholar]
  11. Knowles R. G., Salter M., Brooks S. L., Moncada S. Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1042–1048. doi: 10.1016/0006-291x(90)91551-3. [DOI] [PubMed] [Google Scholar]
  12. Liu M. S., Takeda H. Endotoxin-induced stimulation on phospholipase A activities in dog hearts. Biochem Med. 1982 Aug;28(1):62–69. doi: 10.1016/0006-2944(82)90055-2. [DOI] [PubMed] [Google Scholar]
  13. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  14. Moore P. K., al-Swayeh O. A., Chong N. W., Evans R. A., Gibson A. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol. 1990 Feb;99(2):408–412. doi: 10.1111/j.1476-5381.1990.tb14717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  16. Palmer R. M., Rees D. D., Ashton D. S., Moncada S. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1251–1256. doi: 10.1016/s0006-291x(88)81362-7. [DOI] [PubMed] [Google Scholar]
  17. Radomski M. W., Palmer R. M., Moncada S. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci U S A. 1990 Dec;87(24):10043–10047. doi: 10.1073/pnas.87.24.10043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rees D. D., Cellek S., Palmer R. M., Moncada S. Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock. Biochem Biophys Res Commun. 1990 Dec 14;173(2):541–547. doi: 10.1016/s0006-291x(05)80068-3. [DOI] [PubMed] [Google Scholar]
  19. Rees D. D., Palmer R. M., Hodson H. F., Moncada S. A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol. 1989 Feb;96(2):418–424. doi: 10.1111/j.1476-5381.1989.tb11833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rees D. D., Palmer R. M., Schulz R., Hodson H. F., Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. doi: 10.1111/j.1476-5381.1990.tb14151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Salvemini D., Korbut R., Anggård E., Vane J. Immediate release of a nitric oxide-like factor from bovine aortic endothelial cells by Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2593–2597. doi: 10.1073/pnas.87.7.2593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schmidt H. H., Nau H., Wittfoht W., Gerlach J., Prescher K. E., Klein M. M., Niroomand F., Böhme E. Arginine is a physiological precursor of endothelium-derived nitric oxide. Eur J Pharmacol. 1988 Sep 13;154(2):213–216. doi: 10.1016/0014-2999(88)90101-x. [DOI] [PubMed] [Google Scholar]
  24. Smith R. E., Palmer R. M., Moncada S. Coronary vasodilatation induced by endotoxin in the rabbit isolated perfused heart is nitric oxide-dependent and inhibited by dexamethasone. Br J Pharmacol. 1991 Sep;104(1):5–6. doi: 10.1111/j.1476-5381.1991.tb12375.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stuehr D. J., Marletta M. A. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines, or interferon-gamma. J Immunol. 1987 Jul 15;139(2):518–525. [PubMed] [Google Scholar]
  26. Tahri-Jouti M. A., Chaby R. Specific binding of lipopolysaccharides to mouse macrophages--I. Characteristics of the interaction and inefficiency of the polysaccharide region. Mol Immunol. 1990 Aug;27(8):751–761. doi: 10.1016/0161-5890(90)90084-d. [DOI] [PubMed] [Google Scholar]
  27. Thiemermann C., Vane J. Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. Eur J Pharmacol. 1990 Jul 17;182(3):591–595. doi: 10.1016/0014-2999(90)90062-b. [DOI] [PubMed] [Google Scholar]
  28. Wright C. E., Rees D. D., Moncada S. Protective and pathological roles of nitric oxide in endotoxin shock. Cardiovasc Res. 1992 Jan;26(1):48–57. doi: 10.1093/cvr/26.1.48. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES