Abstract
1. In vitro experiments in a microvascular myograph were designed to characterize postjunctional muscarinic receptors producing contraction both in the presence and absence of the endothelium in coronary resistance arteries (normalized diameter of 150-450 microns), isolated from the left ventricle of hearts from 3-6 month old lambs. Preferential muscarinic receptor antagonists were used to determine the receptor subtype: pirenzepine (M1 receptor), AFDX 116 (M2 receptor), 4-DAMP and pFHHSiD (M3 receptor). 2. The rank order of potency for muscarinic agonist-induced increases in tension in endothelium-intact preparations was oxotremorine-M = methacholine = acetylcholine (ACh) > carbachol. Removal of the endothelium increased the potency of ACh, but this procedure did not change either the sensitivity or maximal response to carbachol. 3. The contractile response to ACh was reproducible. Incubation with 3 x 10(-7)-3 x 10(-6) M pirenzepine induced non-parallel rightward shifts and depressed the maximum of the concentration-response curve to ACh in endothelium-intact arteries. The slope by Schild analysis was 2.9 +/- 0.8 (P < 0.05, n = 7). Atropine, AFDX 116, 4-DAMP and pFHHSiD produced parallel rightward shifts of the curves to ACh and the slopes of the Schild plots were not significantly different from unity. The pKB values for the antagonists from plots constrained to unity in endothelium-intact segments were: atropine (9.4), 4-DAMP (9.0), pFHHSiD (7.9) and AFDX 116 (6.2). 4. In endothelium-denuded arteries, pirenzepine, AFDX 116 and pFHHSiD caused concentration-dependent, parallel rightward displacements of the concentration-response curves to ACh and the slopes of the Schild plots were not significantly different from unity. The plots constrained to a slope of unity gave the following pKB values: pFHHSiD (8.7), pirenzepine (7.5) and AFDX 116 (6.2). 5. In the presence of the endothelium, low concentrations of pirenzepine (10(-9)-10(-7) M) produced leftward shifts of the ACh concentration-response curves. This potentiating effect of pirenzepine was reversed by endothelial cell removal. In preparations precontracted with the thromboxane-mimetic, U46619, the putative M1-selective agonist, McN-A-343, induced a biphasic relaxation with log IC50 of 8.53 +/- 0.14 and 5.02 +/- 0.08 for the first and second phase of the relaxation, respectively, and maximal relaxations of 22.8 +/- 4.3% and 41.1 +/- 5.4% (n = 16). McN-A-343 relaxed the vessels in the presence of 10(-7) M pFHHSiD and 3 x 10(-7) M AFDX 116, but not after incubation with 10(-9) M pirenzepine.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alosachie I., Godfraind T. The modulatory role of vascular endothelium in the interaction of agonists and antagonists with alpha-adrenoceptors in the rat aorta. Br J Pharmacol. 1988 Oct;95(2):619–629. doi: 10.1111/j.1476-5381.1988.tb11684.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bognar I. T., Beinhauer B., Kann P., Fuder H. Different muscarinic receptors mediate autoinhibition of acetylcholine release and vagally-induced vasoconstriction in the rat isolated perfused heart. Naunyn Schmiedebergs Arch Pharmacol. 1990 Apr;341(4):279–287. doi: 10.1007/BF00180652. [DOI] [PubMed] [Google Scholar]
- Brunner F., Kühberger E., Groschner K., Pöch G., Kukovetz W. R. Characterization of muscarinic receptors mediating endothelium-dependent relaxation of bovine coronary artery. Eur J Pharmacol. 1991 Jul 23;200(1):25–33. doi: 10.1016/0014-2999(91)90661-9. [DOI] [PubMed] [Google Scholar]
- Brunner F., Kühberger E., Schloos J., Kukovetz W. R. Characterization of muscarinic receptors of bovine coronary artery by functional and radioligand binding studies. Eur J Pharmacol. 1991 Apr 24;196(3):247–255. doi: 10.1016/0014-2999(91)90437-u. [DOI] [PubMed] [Google Scholar]
- Buckley N. J., Bonner T. I., Buckley C. M., Brann M. R. Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol. 1989 Apr;35(4):469–476. [PubMed] [Google Scholar]
- Cowan C. L., McKenzie J. E. Cholinergic regulation of resting coronary blood flow in domestic swine. Am J Physiol. 1990 Jul;259(1 Pt 2):H109–H115. doi: 10.1152/ajpheart.1990.259.1.H109. [DOI] [PubMed] [Google Scholar]
- Dauphin F., Hamel E. Muscarinic receptor subtype mediating vasodilation feline middle cerebral artery exhibits M3 pharmacology. Eur J Pharmacol. 1990 Mar 20;178(2):203–213. doi: 10.1016/0014-2999(90)90476-m. [DOI] [PubMed] [Google Scholar]
- Delmendo R. E., Michel A. D., Whiting R. L. Affinity of muscarinic receptor antagonists for three putative muscarinic receptor binding sites. Br J Pharmacol. 1989 Feb;96(2):457–464. doi: 10.1111/j.1476-5381.1989.tb11838.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duckles S. P., Garcia-Villalon A. L. Characterization of vascular muscarinic receptors: rabbit ear artery and bovine coronary artery. J Pharmacol Exp Ther. 1990 May;253(2):608–613. [PubMed] [Google Scholar]
- Duckles S. P. Vascular muscarinic receptors: pharmacological characterization in the bovine coronary artery. J Pharmacol Exp Ther. 1988 Sep;246(3):929–934. [PubMed] [Google Scholar]
- Duckles S. P. p-Fluoro-hexahydro-sila-difenidol: affinity for vascular muscarinic receptors. Eur J Pharmacol. 1990 Aug 28;185(2-3):227–230. doi: 10.1016/0014-2999(90)90645-m. [DOI] [PubMed] [Google Scholar]
- Eglen R. M., Kenny B. A., Michel A. D., Whiting R. L. Muscarinic activity of McN-A-343 and its value in muscarinic receptor classification. Br J Pharmacol. 1987 Apr;90(4):693–700. doi: 10.1111/j.1476-5381.1987.tb11222.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eglen R. M., Michel A. D., Montgomery W. W., Kunysz E. A., Machado C. A., Whiting R. L. The interaction of parafluorohexahydrosiladiphenidol at muscarinic receptors in vitro. Br J Pharmacol. 1990 Apr;99(4):637–642. doi: 10.1111/j.1476-5381.1990.tb12983.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eglen R. M., Whiting R. L. Determination of the muscarinic receptor subtype mediating vasodilatation. Br J Pharmacol. 1985 Jan;84(1):3–5. [PMC free article] [PubMed] [Google Scholar]
- Eglen R. M., Whiting R. L. Heterogeneity of vascular muscarinic receptors. J Auton Pharmacol. 1990 Aug;10(4):233–245. doi: 10.1111/j.1474-8673.1990.tb00023.x. [DOI] [PubMed] [Google Scholar]
- Entzeroth M., Doods H. N., Mayer N. Characterization of porcine coronary muscarinic receptors. Naunyn Schmiedebergs Arch Pharmacol. 1990 May;341(5):432–438. doi: 10.1007/BF00176336. [DOI] [PubMed] [Google Scholar]
- Feigl E. O. Parasympathetic control of coronary blood flow in dogs. Circ Res. 1969 Nov;25(5):509–519. doi: 10.1161/01.res.25.5.509. [DOI] [PubMed] [Google Scholar]
- Hackett J. G., Abboud F. M., Mark A. L., Schmid P. G., Heistad D. D. Coronary vascular responses to stimulation of chemoreceptors and baroreceptors: evidence for reflex activation of vagal cholinergic innervation. Circ Res. 1972 Jul;31(1):8–17. doi: 10.1161/01.res.31.1.8. [DOI] [PubMed] [Google Scholar]
- Hammer R., Giachetti A. Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization. Life Sci. 1982 Dec 27;31(26):2991–2998. doi: 10.1016/0024-3205(82)90066-2. [DOI] [PubMed] [Google Scholar]
- Hodgson J. M., Marshall J. J. Direct vasoconstriction and endothelium-dependent vasodilation. Mechanisms of acetylcholine effects on coronary flow and arterial diameter in patients with nonstenotic coronary arteries. Circulation. 1989 May;79(5):1043–1051. doi: 10.1161/01.cir.79.5.1043. [DOI] [PubMed] [Google Scholar]
- Hulme E. C., Birdsall N. J., Buckley N. J. Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol. 1990;30:633–673. doi: 10.1146/annurev.pa.30.040190.003221. [DOI] [PubMed] [Google Scholar]
- Ito B. R., Feigl E. O. Carotid chemoreceptor reflex parasympathetic coronary vasodilation in the dog. Am J Physiol. 1985 Dec;249(6 Pt 2):H1167–H1175. doi: 10.1152/ajpheart.1985.249.6.H1167. [DOI] [PubMed] [Google Scholar]
- Kalsner S. Cholinergic constriction in the general circulation and its role in coronary artery spasm. Circ Res. 1989 Aug;65(2):237–257. doi: 10.1161/01.res.65.2.237. [DOI] [PubMed] [Google Scholar]
- Kalsner S. Cholinergic mechanisms in human coronary artery preparations: implications of species differences. J Physiol. 1985 Jan;358:509–526. doi: 10.1113/jphysiol.1985.sp015564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalsner S. The effects of periarterial nerve activation on coronary vessel tone in an isolated and perfused slab of beef ventricle. Can J Physiol Pharmacol. 1979 Mar;57(3):291–297. doi: 10.1139/y79-043. [DOI] [PubMed] [Google Scholar]
- Kawamura A., Fujiwara H., Onodera T., Wu D. J., Matsuda M., Ishida M., Takemura G., Fujiwara Y., Kawai C. Response of large and small coronary arteries of pigs to intracoronary injection of acetylcholine: angiographic and histologic analysis. Int J Cardiol. 1989 Dec;25(3):289–302. doi: 10.1016/0167-5273(89)90219-2. [DOI] [PubMed] [Google Scholar]
- Knight D. R., Shen Y. T., Young M. A., Vatner S. F. Acetylcholine-induced coronary vasoconstriction and vasodilation in tranquilized baboons. Circ Res. 1991 Sep;69(3):706–713. doi: 10.1161/01.res.69.3.706. [DOI] [PubMed] [Google Scholar]
- Lambrecht G., Feifel R., Forth B., Strohmann C., Tacke R., Mutschler E. p-fluoro-hexahydro-sila-difenidol: the first M2 beta-selective muscarinic antagonist. Eur J Pharmacol. 1988 Jul 26;152(1-2):193–194. doi: 10.1016/0014-2999(88)90856-4. [DOI] [PubMed] [Google Scholar]
- Morrison K. J., Vanhoutte P. M. Characterization of muscarinic receptors that mediate contraction of guinea-pig isolated trachea to choline esters: effect of removing epithelium. Br J Pharmacol. 1992 Jul;106(3):672–676. doi: 10.1111/j.1476-5381.1992.tb14393.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulvany M. J., Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res. 1977 Jul;41(1):19–26. doi: 10.1161/01.res.41.1.19. [DOI] [PubMed] [Google Scholar]
- Mulvany M. J., Nyborg N. An increased calcium sensitivity of mesenteric resistance vessels in young and adult spontaneously hypertensive rats. Br J Pharmacol. 1980;71(2):585–596. doi: 10.1111/j.1476-5381.1980.tb10977.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakayama K., Osol G., Halpern W. Reactivity of isolated porcine coronary resistance arteries to cholinergic and adrenergic drugs and transmural pressure changes. Circ Res. 1988 Apr;62(4):741–748. doi: 10.1161/01.res.62.4.741. [DOI] [PubMed] [Google Scholar]
- Nyborg N. C. Action of noradrenaline on isolated proximal and distal coronary arteries of rat: selective release of endothelium-derived relaxing factor in proximal arteries. Br J Pharmacol. 1990 Jul;100(3):552–556. doi: 10.1111/j.1476-5381.1990.tb15845.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pelc L. R., Daemmgen J. W., Gross G. J., Warltier D. C. Muscarinic receptor subtypes mediating myocardial blood flow redistribution. J Cardiovasc Pharmacol. 1988 Apr;11(4):424–431. doi: 10.1097/00005344-198804000-00007. [DOI] [PubMed] [Google Scholar]
- Prieto D., Benedito S., Simonsen U., Nyborg N. C. Regional heterogeneity in the contractile and potentiating effects of neuropeptide Y in rat isolated coronary arteries: modulatory action of the endothelium. Br J Pharmacol. 1991 Mar;102(3):754–758. doi: 10.1111/j.1476-5381.1991.tb12245.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simonsen U., Prieto D., Mulvany M. J., Ehrnrooth E., Korsgaard N., Nyborg N. C. Effect of induced hypercholesterolemia in rabbits on functional responses of isolated large proximal and small distal coronary arteries. Arterioscler Thromb. 1992 Mar;12(3):380–392. doi: 10.1161/01.atv.12.3.380. [DOI] [PubMed] [Google Scholar]
- Tschudi M., Richard V., Bühler F. R., Lüscher T. F. Importance of endothelium-derived nitric oxide in porcine coronary resistance arteries. Am J Physiol. 1991 Jan;260(1 Pt 2):H13–H20. doi: 10.1152/ajpheart.1991.260.1.H13. [DOI] [PubMed] [Google Scholar]
- Van Charldorp K. J., De Jonge A., Davidesko D., Rinner I., Doods H. N., Van Zwieten P. A. Coronary constriction induced by vagal stimulation in the isolated rat heart. Eur J Pharmacol. 1987 Apr 7;136(1):135–136. doi: 10.1016/0014-2999(87)90792-8. [DOI] [PubMed] [Google Scholar]
- Van Winkle D. M., Feigl E. O. Acetylcholine causes coronary vasodilation in dogs and baboons. Circ Res. 1989 Dec;65(6):1580–1593. doi: 10.1161/01.res.65.6.1580. [DOI] [PubMed] [Google Scholar]
- Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
- van Charldorp K. J., van Zwieten P. A. Comparison of the muscarinic receptors in the coronary artery, cerebral artery and atrium of the pig. Naunyn Schmiedebergs Arch Pharmacol. 1989 Apr;339(4):403–408. doi: 10.1007/BF00736054. [DOI] [PubMed] [Google Scholar]
