Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Aug;109(4):1254–1262. doi: 10.1111/j.1476-5381.1993.tb13757.x

Vascular mode of action of kinin B1 receptors and development of a cellular model for the investigation of these receptors.

L Levesque 1, G Drapeau 1, J H Grose 1, F Rioux 1, F Marceau 1
PMCID: PMC2175773  PMID: 8104648

Abstract

1. Kinins exert a contractile effect on rabbit aortic rings via the stimulation of B1 receptors. Des-Arg9-bradykinin (BK) is more potent than BK on this receptor type. The mode of action of des-Arg9-BK on rabbit aortic tissue has been studied by both the aortic ring contractility assay and a cellular model using cultured aortic smooth muscle cells (SMCs). 2. The des-Arg9-BK-induced contractions in rabbit aortic rings were unaffected by pretreatments with nifedipine, indomethacin, REV-5901 (a 5-lipoxygenase blocker) and LY-83583 (a guanylyl cyclase inhibitor); however, the protein kinase inhibitors H-7 and H-9 significantly reduced the maximal effect of des-Arg9-BK. 3. The contractile responses to des-Arg9-BK in calcium-free Krebs solution were slightly but not significantly attenuated in amplitude, as compared to paired control tissues bathed in Krebs solution, and sustained plateaus of contraction were observed in the absence of Ca2+. However, Ca2+ replenishment further increased the kinin-induced contraction measured in Ca(2+)-free bathing fluid. 4. Despite the lack of evidence of a mediating role for prostaglandin in the mechanical response to des-Arg9-BK, the kinin stimulated the release of prostacyclin from rabbit aorta rings measured as immunoreactive 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1254

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balla T., Baukal A. J., Guillemette G., Catt K. J. Multiple pathways of inositol polyphosphate metabolism in angiotensin-stimulated adrenal glomerulosa cells. J Biol Chem. 1988 Mar 25;263(9):4083–4091. [PubMed] [Google Scholar]
  2. Beny J. L., Brunet P., Huggel H. Interaction of bradykinin and des-Arg9-bradykinin with isolated pig coronary arteries: mechanical and electrophysiological events. Regul Pept. 1987 Apr;17(4):181–190. doi: 10.1016/0167-0115(87)90061-9. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bouthillier J., Deblois D., Marceau F. Studies on the induction of pharmacological responses to des-Arg9-bradykinin in vitro and in vivo. Br J Pharmacol. 1987 Oct;92(2):257–264. doi: 10.1111/j.1476-5381.1987.tb11319.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cauvin C., Loutzenhiser R., Van Breemen C. Mechanisms of calcium antagonist-induced vasodilation. Annu Rev Pharmacol Toxicol. 1983;23:373–396. doi: 10.1146/annurev.pa.23.040183.002105. [DOI] [PubMed] [Google Scholar]
  6. Churchill L., Ward P. E. Relaxation of isolated mesenteric arteries by des-Arg9-bradykinin stimulation of B1 receptors. Eur J Pharmacol. 1986 Oct 14;130(1-2):11–18. doi: 10.1016/0014-2999(86)90178-0. [DOI] [PubMed] [Google Scholar]
  7. Deblois D., Bouthillier J., Marceau F. Effect of glucocorticoids, monokines and growth factors on the spontaneously developing responses of the rabbit isolated aorta to des-Arg9-bradykinin. Br J Pharmacol. 1988 Apr;93(4):969–977. doi: 10.1111/j.1476-5381.1988.tb11487.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deblois D., Marceau F. The ability of des-Arg9-bradykinin to relax rabbit isolated mesenteric arteries is acquired during in vitro incubation. Eur J Pharmacol. 1987 Oct 6;142(1):141–144. doi: 10.1016/0014-2999(87)90664-9. [DOI] [PubMed] [Google Scholar]
  9. Demirel E., Türker R. K. Inhibition of iloprost of the contractile effect of noradrenaline in mesenteric artery rings: evidence for a possible calcium-dependent mechanism. Prostaglandins Leukot Essent Fatty Acids. 1991 Mar;42(3):185–189. doi: 10.1016/0952-3278(91)90156-y. [DOI] [PubMed] [Google Scholar]
  10. Diamond J. Effects of LY83583, nordihydroguaiaretic acid, and quinacrine on cyclic GMP elevation and inhibition of tension by muscarinic agonists in rabbit aorta and left atrium. Can J Physiol Pharmacol. 1987 Sep;65(9):1913–1917. doi: 10.1139/y87-297. [DOI] [PubMed] [Google Scholar]
  11. Dixon B. S., Breckon R., Fortune J., Vavrek R. J., Stewart J. M., Marzec-Calvert R., Linas S. L. Effects of kinins on cultured arterial smooth muscle. Am J Physiol. 1990 Feb;258(2 Pt 1):C299–C308. doi: 10.1152/ajpcell.1990.258.2.C299. [DOI] [PubMed] [Google Scholar]
  12. Downes C. P., Hawkins P. T., Irvine R. F. Inositol 1,3,4,5-tetrakisphosphate and not phosphatidylinositol 3,4-bisphosphate is the probable precursor of inositol 1,3,4-trisphosphate in agonist-stimulated parotid gland. Biochem J. 1986 Sep 1;238(2):501–506. doi: 10.1042/bj2380501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Drapeau G., deBlois D., Marceau F. Hypotensive effects of Lys-des-Arg9-bradykinin and metabolically protected agonists of B1 receptors for kinins. J Pharmacol Exp Ther. 1991 Dec;259(3):997–1003. [PubMed] [Google Scholar]
  14. Farmer S. G., Burch R. M. Biochemical and molecular pharmacology of kinin receptors. Annu Rev Pharmacol Toxicol. 1992;32:511–536. doi: 10.1146/annurev.pa.32.040192.002455. [DOI] [PubMed] [Google Scholar]
  15. Farmer S. G., McMillan B. A., Meeker S. N., Burch R. M. Induction of vascular smooth muscle bradykinin B1 receptors in vivo during antigen arthritis. Agents Actions. 1991 Sep;34(1-2):191–193. doi: 10.1007/BF01993275. [DOI] [PubMed] [Google Scholar]
  16. Förstermann U., Hertting G., Neufang B. The importance of endogenous prostaglandins other than prostacyclin, for the modulation of contractility of some rabbit blood vessels. Br J Pharmacol. 1984 Apr;81(4):623–630. doi: 10.1111/j.1476-5381.1984.tb16127.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Guillemette G., Lamontagne S., Boulay G., Mouillac B. Differential effects of heparin on inositol 1,4,5-trisphosphate binding, metabolism, and calcium release activity in the bovine adrenal cortex. Mol Pharmacol. 1989 Mar;35(3):339–344. [PubMed] [Google Scholar]
  18. Hess J. F., Borkowski J. A., Young G. S., Strader C. D., Ransom R. W. Cloning and pharmacological characterization of a human bradykinin (BK-2) receptor. Biochem Biophys Res Commun. 1992 Apr 15;184(1):260–268. doi: 10.1016/0006-291x(92)91187-u. [DOI] [PubMed] [Google Scholar]
  19. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  20. Hock F. J., Wirth K., Albus U., Linz W., Gerhards H. J., Wiemer G., Henke S., Breipohl G., König W., Knolle J. Hoe 140 a new potent and long acting bradykinin-antagonist: in vitro studies. Br J Pharmacol. 1991 Mar;102(3):769–773. doi: 10.1111/j.1476-5381.1991.tb12248.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Inagaki M., Watanabe M., Hidaka H. N-(2-Aminoethyl)-5-isoquinolinesulfonamide, a newly synthesized protein kinase inhibitor, functions as a ligand in affinity chromatography. Purification of Ca2+-activated, phospholipid-dependent and other protein kinases. J Biol Chem. 1985 Mar 10;260(5):2922–2925. [PubMed] [Google Scholar]
  22. Issandou M., Darbon J. M. Des-Arg9 bradykinin modulates DNA synthesis, phospholipase C, and protein kinase C in cultured mesangial cells. Distinction from effects of bradykinin. J Biol Chem. 1991 Nov 5;266(31):21037–21043. [PubMed] [Google Scholar]
  23. Kantor H. S., Hampton M. Indomethacin in submicromolar concentrations inhibits cyclic AMP-dependent protein kinase. Nature. 1978 Dec 21;276(5690):841–842. doi: 10.1038/276841a0. [DOI] [PubMed] [Google Scholar]
  24. Lebel M., Grose J. H. Abnormal renal prostaglandin production during the evolution of chronic nephropathy. Am J Nephrol. 1986;6(2):96–100. doi: 10.1159/000167062. [DOI] [PubMed] [Google Scholar]
  25. Lortie M., Regoli D., Rhaleb N. E., Plante G. E. The role of B1- and B2-kinin receptors in the renal tubular and hemodynamic response to bradykinin. Am J Physiol. 1992 Jan;262(1 Pt 2):R72–R76. doi: 10.1152/ajpregu.1992.262.1.R72. [DOI] [PubMed] [Google Scholar]
  26. Marceau F., Petitclerc E., DeBlois D., Pradelles P., Poubelle P. E. Human interleukin-1 induces a rapid relaxation of the rabbit isolated mesenteric artery. Br J Pharmacol. 1991 Jun;103(2):1367–1372. doi: 10.1111/j.1476-5381.1991.tb09795.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McEachern A. E., Shelton E. R., Bhakta S., Obernolte R., Bach C., Zuppan P., Fujisaki J., Aldrich R. W., Jarnagin K. Expression cloning of a rat B2 bradykinin receptor. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7724–7728. doi: 10.1073/pnas.88.17.7724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McMillan R. M., Walker E. R. Designing therapeutically effective 5-lipoxygenase inhibitors. Trends Pharmacol Sci. 1992 Aug;13(8):323–330. doi: 10.1016/0165-6147(92)90100-k. [DOI] [PubMed] [Google Scholar]
  29. Müller-Schweinitzer E. Changes in the venous compliance by bradykinin and angiotensin II and its significance for the vascular effects of cyclosporine-A. Naunyn Schmiedebergs Arch Pharmacol. 1988 Dec;338(6):699–703. doi: 10.1007/BF00165637. [DOI] [PubMed] [Google Scholar]
  30. Mülsch A., Lückhoff A., Pohl U., Busse R., Bassenge E. LY 83583 (6-anilino-5,8-quinolinedione) blocks nitrovasodilator-induced cyclic GMP increases and inhibition of platelet activation. Naunyn Schmiedebergs Arch Pharmacol. 1989 Jul;340(1):119–125. doi: 10.1007/BF00169217. [DOI] [PubMed] [Google Scholar]
  31. Rasmussen H., Takuwa Y., Park S. Protein kinase C in the regulation of smooth muscle contraction. FASEB J. 1987 Sep;1(3):177–185. [PubMed] [Google Scholar]
  32. Regoli D. C., Marceau F., Lavigne J. Induction of beta 1-receptors for kinins in the rabbit by a bacterial lipopolysaccharide. Eur J Pharmacol. 1981 Apr 24;71(1):105–115. doi: 10.1016/0014-2999(81)90391-5. [DOI] [PubMed] [Google Scholar]
  33. Regoli D., Barabé J., Park W. K. Receptors for bradykinin in rabbit aortae. Can J Physiol Pharmacol. 1977 Aug;55(4):855–867. doi: 10.1139/y77-115. [DOI] [PubMed] [Google Scholar]
  34. Regoli D., Barabé J. Pharmacology of bradykinin and related kinins. Pharmacol Rev. 1980 Mar;32(1):1–46. [PubMed] [Google Scholar]
  35. Regoli D., Marceau F., Barabé J. De novo formation of vascular receptors for bradykinin. Can J Physiol Pharmacol. 1978 Aug;56(4):674–677. doi: 10.1139/y78-109. [DOI] [PubMed] [Google Scholar]
  36. Rhaleb N. E., Dion S., Barabé J., Rouissi N., Jukic D., Drapeau G., Regoli D. Receptors for kinins in isolated arterial vessels of dogs. Eur J Pharmacol. 1989 Mar 29;162(3):419–427. doi: 10.1016/0014-2999(89)90332-4. [DOI] [PubMed] [Google Scholar]
  37. Ritter J. M., Doktor H. S., Cragoe E. J., Jr Actions of bradykinin and related peptides on rabbit coeliac artery rings. Br J Pharmacol. 1989 Jan;96(1):23–28. doi: 10.1111/j.1476-5381.1989.tb11779.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Siebeck M., Whalley E. T., Hoffmann H., Weipert J., Fritz H. The hypotensive response to des-Arg9-bradykinin increases during E. coli septicemia in the pig. Adv Exp Med Biol. 1989;247B:389–393. doi: 10.1007/978-1-4615-9546-5_64. [DOI] [PubMed] [Google Scholar]
  39. Simmet T., Hertting G. On the relation between contraction and prostaglandin release in rabbit mesenteric blood vessels. Eur J Pharmacol. 1980 Aug 8;65(4):325–331. doi: 10.1016/0014-2999(80)90335-0. [DOI] [PubMed] [Google Scholar]
  40. Toda N., Bian K., Akiba T., Okamura T. Heterogeneity in mechanisms of bradykinin action in canine isolated blood vessels. Eur J Pharmacol. 1987 Mar 31;135(3):321–329. doi: 10.1016/0014-2999(87)90681-9. [DOI] [PubMed] [Google Scholar]
  41. Tropea M. M., Gummelt D., Herzig M. S., Leeb-Lundberg L. M. B1 and B2 kinin receptors on cultured rabbit superior mesenteric artery smooth muscle cells: receptor-specific stimulation of inositol phosphate formation and arachidonic acid release by des-Arg9-bradykinin and bradykinin. J Pharmacol Exp Ther. 1993 Feb;264(2):930–937. [PubMed] [Google Scholar]
  42. deBlois D., Bouthillier J., Marceau F. Pharmacological modulation of the up-regulated responses to des-Arg9-bradykinin in vivo and in vitro. Immunopharmacology. 1989 May-Jun;17(3):187–198. doi: 10.1016/0162-3109(89)90047-7. [DOI] [PubMed] [Google Scholar]
  43. deBlois D., Bouthillier J., Marceau F. Pulse exposure to protein synthesis inhibitors enhances vascular responses to des-Arg9-bradykinin: possible role of interleukin-1. Br J Pharmacol. 1991 May;103(1):1057–1066. doi: 10.1111/j.1476-5381.1991.tb12300.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. deBlois D., Drapeau G., Petitclerc E., Marceau F. Synergism between the contractile effect of epidermal growth factor and that of des-Arg9-bradykinin or of alpha-thrombin in rabbit aortic rings. Br J Pharmacol. 1992 Apr;105(4):959–967. doi: 10.1111/j.1476-5381.1992.tb09085.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES