Abstract
1. Neuropharmacological actions of a novel metabotropic glutamate receptor agonist, (2S,1'R,2'R,3'R)-2(2,3-dicarboxycyclopropyl)glycine (DCG-IV), were examined in the isolated spinal cord of the newborn rat, and compared with those of the established agonists of (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I) or (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD). 2. At concentrations higher than 10 microM, DCG-IV caused a depolarization which was completely blocked by selective N-methyl-D-aspartate (NMDA) antagonists. The depolarization was pharmacologically quite different from that caused by L-CCG-I and (1S,3R)-ACPD. 3. DCG-IV reduced the monosynaptic excitation of motoneurones rather than polysynaptic discharges in the nanomolar range without causing postsynaptic depolarization of motoneurones. DCG-IV was more effective than L-CCG-I, (1S,3R)-ACPD or L-2-amino-4-phosphonobutanoic acid (L-AP4) in reducing the monosynaptic excitation of motoneurones. 4. DCG-IV (30 nM-1 microM) did not depress the depolarization induced by known excitatory amino acids in the newborn rat motoneurones, but depressed the baseline fluctuation of the potential derived from ventral roots. Therefore, DCG-IV seems to reduce preferentially transmitter release from primary afferent nerve terminals. 5. Depression of monosynaptic excitation caused by DCG-IV was not affected by any known pharmacological agents, including 2-amino-3-phosphonopropanoic acid (AP3), diazepam, 2-hydroxysaclofen, picrotoxin and strychnine. 6. DCG-IV has the potential of providing further useful information on the physiological function of metabotropic glutamate receptors.
Full text
PDF![1169](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9744/2175774/c2b54d268bdc/brjpharm00721-0281.png)
![1170](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9744/2175774/e06a64d66673/brjpharm00721-0282.png)
![1171](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9744/2175774/8ee37392856d/brjpharm00721-0283.png)
![1172](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9744/2175774/263d1aac3a33/brjpharm00721-0284.png)
![1173](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9744/2175774/0cdb65d4bb63/brjpharm00721-0285.png)
![1174](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9744/2175774/6ce505dcb33e/brjpharm00721-0286.png)
![1175](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9744/2175774/851b18e18159/brjpharm00721-0287.png)
![1176](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9744/2175774/c650e0792e56/brjpharm00721-0288.png)
![1177](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9744/2175774/8ac21510c3f9/brjpharm00721-0289.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akagi H., Yanagisawa M. GABAergic modulation of a substance P-mediated reflex of slow time course in the isolated rat spinal cord. Br J Pharmacol. 1987 May;91(1):189–197. doi: 10.1111/j.1476-5381.1987.tb08998.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baskys A., Malenka R. C. Agonists at metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus. J Physiol. 1991 Dec;444:687–701. doi: 10.1113/jphysiol.1991.sp018901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boss V., Desai M. A., Smith T. S., Conn P. J. Trans-ACPD-induced phosphoinositide hydrolysis and modulation of hippocampal pyramidal cell excitability do not undergo parallel developmental regulation. Brain Res. 1992 Oct 30;594(2):181–188. doi: 10.1016/0006-8993(92)91124-w. [DOI] [PubMed] [Google Scholar]
- Davies J., Watkins J. C. Actions of D and L forms of 2-amino-5-phosphonovalerate and 2-amino-4-phosphonobutyrate in the cat spinal cord. Brain Res. 1982 Mar 11;235(2):378–386. doi: 10.1016/0006-8993(82)91017-4. [DOI] [PubMed] [Google Scholar]
- Desai M. A., Conn P. J. Excitatory effects of ACPD receptor activation in the hippocampus are mediated by direct effects on pyramidal cells and blockade of synaptic inhibition. J Neurophysiol. 1991 Jul;66(1):40–52. doi: 10.1152/jn.1991.66.1.40. [DOI] [PubMed] [Google Scholar]
- Evans R. H., Francis A. A., Jones A. W., Smith D. A., Watkins J. C. The effects of a series of omega-phosphonic alpha-carboxylic amino acids on electrically evoked and excitant amino acid-induced responses in isolated spinal cord preparations. Br J Pharmacol. 1982 Jan;75(1):65–75. doi: 10.1111/j.1476-5381.1982.tb08758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi Y., Tanabe Y., Aramori I., Masu M., Shimamoto K., Ohfune Y., Nakanishi S. Agonist analysis of 2-(carboxycyclopropyl)glycine isomers for cloned metabotropic glutamate receptor subtypes expressed in Chinese hamster ovary cells. Br J Pharmacol. 1992 Oct;107(2):539–543. doi: 10.1111/j.1476-5381.1992.tb12780.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill D. R. GABAB receptor modulation of adenylate cyclase activity in rat brain slices. Br J Pharmacol. 1985 Jan;84(1):249–257. [PMC free article] [PubMed] [Google Scholar]
- Irving A. J., Schofield J. G., Watkins J. C., Sunter D. C., Collingridge G. L. 1S,3R-ACPD stimulates and L-AP3 blocks Ca2+ mobilization in rat cerebellar neurons. Eur J Pharmacol. 1990 Sep 21;186(2-3):363–365. doi: 10.1016/0014-2999(90)90462-f. [DOI] [PubMed] [Google Scholar]
- Ishida M., Akagi H., Shimamoto K., Ohfune Y., Shinozaki H. A potent metabotropic glutamate receptor agonist: electrophysiological actions of a conformationally restricted glutamate analogue in the rat spinal cord and Xenopus oocytes. Brain Res. 1990 Dec 24;537(1-2):311–314. doi: 10.1016/0006-8993(90)90375-l. [DOI] [PubMed] [Google Scholar]
- Ishida M., Ohfune Y., Shimada Y., Shimamoto K., Shinozaki H. Changes in preference for receptor subtypes of configurational variants of a glutamate analog: conversion from the NMDA-type to the non-NMDA type. Brain Res. 1991 May 31;550(1):152–156. doi: 10.1016/0006-8993(91)90420-z. [DOI] [PubMed] [Google Scholar]
- Ishida M., Shinozaki H. Glutamate inhibitory action of matrine at the crayfish neuromuscular junction. Br J Pharmacol. 1984 Jun;82(2):523–531. doi: 10.1111/j.1476-5381.1984.tb10789.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jahr C. E., Yoshioka K. Ia afferent excitation of motoneurones in the in vitro new-born rat spinal cord is selectively antagonized by kynurenate. J Physiol. 1986 Jan;370:515–530. doi: 10.1113/jphysiol.1986.sp015948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karbon E. W., Enna S. J. Characterization of the relationship between gamma-aminobutyric acid B agonists and transmitter-coupled cyclic nucleotide-generating systems in rat brain. Mol Pharmacol. 1985 Jan;27(1):53–59. [PubMed] [Google Scholar]
- Kawai M., Horikawa Y., Ishihara T., Shimamoto K., Ohfune Y. 2-(Carboxycyclopropyl)glycines: binding, neurotoxicity and induction of intracellular free Ca2+ increase. Eur J Pharmacol. 1992 Feb 11;211(2):195–202. doi: 10.1016/0014-2999(92)90529-d. [DOI] [PubMed] [Google Scholar]
- Koerner J. F., Cotman C. W. Micromolar L-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex. Brain Res. 1981 Jul 6;216(1):192–198. doi: 10.1016/0006-8993(81)91288-9. [DOI] [PubMed] [Google Scholar]
- Kudo Y., Akita K., Ishida M., Shinozaki H. A significant increase in intracellular Ca2+ concentration induced by (2S,3R,4S)-2-(carboxycyclopropyl)glycine, a new potent NMDA agonist, in cultured rat hippocampal neurons. Brain Res. 1991 Dec 20;567(2):342–345. doi: 10.1016/0006-8993(91)90817-f. [DOI] [PubMed] [Google Scholar]
- Lovinger D. M. Trans-1-aminocyclopentane-1,3-dicarboxylic acid (t-ACPD) decreases synaptic excitation in rat striatal slices through a presynaptic action. Neurosci Lett. 1991 Aug 5;129(1):17–21. doi: 10.1016/0304-3940(91)90710-b. [DOI] [PubMed] [Google Scholar]
- Miller R. J. Metabotropic excitatory amino acid receptors reveal their true colors. Trends Pharmacol Sci. 1991 Oct;12(10):365–367. doi: 10.1016/0165-6147(91)90604-q. [DOI] [PubMed] [Google Scholar]
- Monaghan D. T., Bridges R. J., Cotman C. W. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol. 1989;29:365–402. doi: 10.1146/annurev.pa.29.040189.002053. [DOI] [PubMed] [Google Scholar]
- Nakagawa Y., Saitoh K., Ishihara T., Ishida M., Shinozaki H. (2S,3S,4S) alpha-(carboxycyclopropyl)glycine is a novel agonist of metabotropic glutamate receptors. Eur J Pharmacol. 1990 Aug 2;184(1):205–206. doi: 10.1016/0014-2999(90)90686-z. [DOI] [PubMed] [Google Scholar]
- Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science. 1992 Oct 23;258(5082):597–603. doi: 10.1126/science.1329206. [DOI] [PubMed] [Google Scholar]
- Nawy S., Jahr C. E. Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature. 1990 Jul 19;346(6281):269–271. doi: 10.1038/346269a0. [DOI] [PubMed] [Google Scholar]
- Nicoletti F., Iadarola M. J., Wroblewski J. T., Costa E. Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with alpha 1-adrenoceptors. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1931–1935. doi: 10.1073/pnas.83.6.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer E., Monaghan D. T., Cotman C. W. Trans-ACPD, a selective agonist of the phosphoinositide-coupled excitatory amino acid receptor. Eur J Pharmacol. 1989 Aug 3;166(3):585–587. doi: 10.1016/0014-2999(89)90383-x. [DOI] [PubMed] [Google Scholar]
- Porter R. H., Roberts P. J., Jane D. E., Watkins J. C. (S)-homoquisqualate: a potent agonist at the glutamate metabotropic receptor. Br J Pharmacol. 1992 Jul;106(3):509–510. doi: 10.1111/j.1476-5381.1992.tb14366.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schoepp D. D., Johnson B. G., Monn J. A. Inhibition of cyclic AMP formation by a selective metabotropic glutamate receptor agonist. J Neurochem. 1992 Mar;58(3):1184–1186. doi: 10.1111/j.1471-4159.1992.tb09381.x. [DOI] [PubMed] [Google Scholar]
- Schoepp D., Bockaert J., Sladeczek F. Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends Pharmacol Sci. 1990 Dec;11(12):508–515. doi: 10.1016/0165-6147(90)90052-a. [DOI] [PubMed] [Google Scholar]
- Shiells R. A., Falk G. Glutamate receptors of rod bipolar cells are linked to a cyclic GMP cascade via a G-protein. Proc Biol Sci. 1990 Nov 22;242(1304):91–94. doi: 10.1098/rspb.1990.0109. [DOI] [PubMed] [Google Scholar]
- Shinozaki H., Ishida M. A metabotropic L-glutamate receptor agonist: pharmacological difference between rat central neurones and crayfish neuromuscular junctions. Comp Biochem Physiol C. 1992 Sep;103(1):13–17. doi: 10.1016/0742-8413(92)90220-2. [DOI] [PubMed] [Google Scholar]
- Shinozaki H., Ishida M. Excitatory amino acids: physiological and pharmacological probes for neuroscience research. Acta Neurobiol Exp (Wars) 1993;53(1):43–51. [PubMed] [Google Scholar]
- Shinozaki H., Ishida M., Shimamoto K., Ohfune Y. A conformationally restricted analogue of L-glutamate, the (2S,3R,4S) isomer of L-alpha-(carboxycyclopropyl)glycine, activates the NMDA-type receptor more markedly than NMDA in the isolated rat spinal cord. Brain Res. 1989 Feb 20;480(1-2):355–359. doi: 10.1016/0006-8993(89)90207-2. [DOI] [PubMed] [Google Scholar]
- Shinozaki H., Ishida M., Shimamoto K., Ohfune Y. Potent NMDA-like actions and potentiation of glutamate responses by conformational variants of a glutamate analogue in the rat spinal cord. Br J Pharmacol. 1989 Dec;98(4):1213–1224. doi: 10.1111/j.1476-5381.1989.tb12667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinozaki H., Ishida M. Theanine as a glutamate antagonist at a crayfish neuromuscular junction. Brain Res. 1978 Jul 28;151(1):215–219. doi: 10.1016/0006-8993(78)90967-8. [DOI] [PubMed] [Google Scholar]
- Sladeczek F., Pin J. P., Récasens M., Bockaert J., Weiss S. Glutamate stimulates inositol phosphate formation in striatal neurones. Nature. 1985 Oct 24;317(6039):717–719. doi: 10.1038/317717a0. [DOI] [PubMed] [Google Scholar]
- Sugiyama H., Ito I., Hirono C. A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature. 1987 Feb 5;325(6104):531–533. doi: 10.1038/325531a0. [DOI] [PubMed] [Google Scholar]
- Sugiyama H., Ito I., Watanabe M. Glutamate receptor subtypes may be classified into two major categories: a study on Xenopus oocytes injected with rat brain mRNA. Neuron. 1989 Jul;3(1):129–132. doi: 10.1016/0896-6273(89)90121-9. [DOI] [PubMed] [Google Scholar]
- Tanabe Y., Masu M., Ishii T., Shigemoto R., Nakanishi S. A family of metabotropic glutamate receptors. Neuron. 1992 Jan;8(1):169–179. doi: 10.1016/0896-6273(92)90118-w. [DOI] [PubMed] [Google Scholar]
- Yamamoto C., Sawada S., Takada S. Suppressing action of 2-amino-4-phosphonobutyric acid on mossy fiber-induced excitation in the guinea pig hippocampus. Exp Brain Res. 1983;51(1):128–134. doi: 10.1007/BF00236810. [DOI] [PubMed] [Google Scholar]