Abstract
1. The 5-hydroxytryptamine (5-HT) receptor binding selectivity profile of a novel, potent 5-HT1D receptor agonist, L-694,247 (2-[5-[3-(4-methylsulphonylamino)benzyl-1,2,4-oxadiazol-5-yl ]- 1H-indole-3-yl]ethylamine) was assessed and compared with that of the 5-HT1-like receptor agonist, sumatriptan. 2. L-694,247 had an affinity (pIC50) of 10.03 at the 5-HT1D binding site and 9.08 at the 5-HT1B binding site (sumatriptan: pIC50 values 8.22 and 5.94 respectively). L-694,247 retained good selectivity with respect to the 5-HT1A binding site (pIC50 = 8.64), the 5-HT1C binding site (6.42), the 5-HT2 binding site (6.50) and the 5-HT1E binding site (5.66). The pIC50 values for sumatriptan at these radioligand binding sites were 6.14, 5.0, < 5.0 and 5.64 respectively. Both L-694,247 and sumatriptan were essentially inactive at the 5-HT3 recognition site. 3. L-694,247, like sumatriptan, displayed a similar efficacy to 5-HT in inhibiting forskolin-stimulated adenylyl cyclase in guinea-pig substantia nigra although L-694,247 (pEC50 = 9.1) was more potent than sumatriptan (6.2) in this 5-HT1D receptor mediated functional response. L-694,247 (pEC50 = 9.4) was also more potent than sumatriptan (6.5) in a second 5-HT1D receptor mediated functional response, the inhibition of K(+)-evoked [3H]-5-HT release from guinea-pig frontal cortex slices.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adham N., Kao H. T., Schecter L. E., Bard J., Olsen M., Urquhart D., Durkin M., Hartig P. R., Weinshank R. L., Branchek T. A. Cloning of another human serotonin receptor (5-HT1F): a fifth 5-HT1 receptor subtype coupled to the inhibition of adenylate cyclase. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):408–412. doi: 10.1073/pnas.90.2.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amlaiky N., Ramboz S., Boschert U., Plassat J. L., Hen R. Isolation of a mouse "5HT1E-like" serotonin receptor expressed predominantly in hippocampus. J Biol Chem. 1992 Oct 5;267(28):19761–19764. [PubMed] [Google Scholar]
- Beer M. S., Stanton J. A., Bevan Y., Chauhan N. S., Middlemiss D. N. An investigation of the 5-HT1D receptor binding affinity of 5-hydroxytryptamine, 5-carboxyamidotryptamine and sumatriptan in the central nervous system of seven species. Eur J Pharmacol. 1992 Mar 24;213(2):193–197. doi: 10.1016/0014-2999(92)90681-s. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Branchek T., Adham N., Macchi M., Kao H. T., Hartig P. R. [3H]-DOB(4-bromo-2,5-dimethoxyphenylisopropylamine) and [3H] ketanserin label two affinity states of the cloned human 5-hydroxytryptamine2 receptor. Mol Pharmacol. 1990 Nov;38(5):604–609. [PubMed] [Google Scholar]
- Buzzi M. G., Moskowitz M. A., Peroutka S. J., Byun B. Further characterization of the putative 5-HT receptor which mediates blockade of neurogenic plasma extravasation in rat dura mater. Br J Pharmacol. 1991 Jun;103(2):1421–1428. doi: 10.1111/j.1476-5381.1991.tb09805.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Vivo M., Maayani S. Characterization of the 5-hydroxytryptamine1a receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther. 1986 Jul;238(1):248–253. [PubMed] [Google Scholar]
- DeLean A., Munson P. J., Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol. 1978 Aug;235(2):E97–102. doi: 10.1152/ajpendo.1978.235.2.E97. [DOI] [PubMed] [Google Scholar]
- Fargin A., Raymond J. R., Lohse M. J., Kobilka B. K., Caron M. G., Lefkowitz R. J. The genomic clone G-21 which resembles a beta-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature. 1988 Sep 22;335(6188):358–360. doi: 10.1038/335358a0. [DOI] [PubMed] [Google Scholar]
- Feniuk W., Humphrey P. P., Perren M. J. The selective carotid arterial vasoconstrictor action of GR43175 in anaesthetized dogs. Br J Pharmacol. 1989 Jan;96(1):83–90. doi: 10.1111/j.1476-5381.1989.tb11787.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gozlan H., El Mestikawy S., Pichat L., Glowinski J., Hamon M. Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature. 1983 Sep 8;305(5930):140–142. doi: 10.1038/305140a0. [DOI] [PubMed] [Google Scholar]
- Hartig P. R., Branchek T. A., Weinshank R. L. A subfamily of 5-HT1D receptor genes. Trends Pharmacol Sci. 1992 Apr;13(4):152–159. doi: 10.1016/0165-6147(92)90053-9. [DOI] [PubMed] [Google Scholar]
- Heuring R. E., Peroutka S. J. Characterization of a novel 3H-5-hydroxytryptamine binding site subtype in bovine brain membranes. J Neurosci. 1987 Mar;7(3):894–903. doi: 10.1523/JNEUROSCI.07-03-00894.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoyer D., Engel G., Kalkman H. O. Characterization of the 5-HT1B recognition site in rat brain: binding studies with (-)[125I]iodocyanopindolol. Eur J Pharmacol. 1985 Nov 26;118(1-2):1–12. doi: 10.1016/0014-2999(85)90657-0. [DOI] [PubMed] [Google Scholar]
- Hoyer D., Middlemiss D. N. Species differences in the pharmacology of terminal 5-HT autoreceptors in mammalian brain. Trends Pharmacol Sci. 1989 Apr;10(4):130–132. doi: 10.1016/0165-6147(89)90159-4. [DOI] [PubMed] [Google Scholar]
- Humphrey P. P., Feniuk W., Perren M. J., Connor H. E., Oxford A. W., Coates L. H., Butina D. GR43175, a selective agonist for the 5-HT1-like receptor in dog isolated saphenous vein. Br J Pharmacol. 1988 Aug;94(4):1123–1132. doi: 10.1111/j.1476-5381.1988.tb11630.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McAllister G., Charlesworth A., Snodin C., Beer M. S., Noble A. J., Middlemiss D. N., Iversen L. L., Whiting P. Molecular cloning of a serotonin receptor from human brain (5HT1E): a fifth 5HT1-like subtype. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5517–5521. doi: 10.1073/pnas.89.12.5517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pazos A., Hoyer D., Palacios J. M. Mesulergine, a selective serotonin-2 ligand in the rat cortex, does not label these receptors in porcine and human cortex: evidence for species differences in brain serotonin-2 receptors. Eur J Pharmacol. 1984 Nov 27;106(3):531–538. doi: 10.1016/0014-2999(84)90056-6. [DOI] [PubMed] [Google Scholar]
- Peroutka S. J., Switzer J. A., Hamik A. Identification of 5-hydroxytryptamine1D binding sites in human brain membranes. Synapse. 1989;3(1):61–66. doi: 10.1002/syn.890030109. [DOI] [PubMed] [Google Scholar]
- Plassat J. L., Boschert U., Amlaiky N., Hen R. The mouse 5HT5 receptor reveals a remarkable heterogeneity within the 5HT1D receptor family. EMBO J. 1992 Dec;11(13):4779–4786. doi: 10.1002/j.1460-2075.1992.tb05583.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
- Waeber C., Schoeffter P., Palacios J. M., Hoyer D. 5-HT1D receptors in guinea-pig and pigeon brain. Radioligand binding and biochemical studies. Naunyn Schmiedebergs Arch Pharmacol. 1989 Nov;340(5):479–485. doi: 10.1007/BF00260601. [DOI] [PubMed] [Google Scholar]
- Watling K. J., Aspley S., Swain C. J., Saunders J. [3H]quaternised ICS 205-930 labels 5-HT3 receptor binding sites in rat brain. Eur J Pharmacol. 1988 May 10;149(3):397–398. doi: 10.1016/0014-2999(88)90677-2. [DOI] [PubMed] [Google Scholar]
- Wilkinson L. O., Hawkins L. M., Beer M. S., Hibert M. F., Middlemiss D. N. Stereoselective actions of the isomers of metitepine at 5-HT1D receptors in the guinea pig brain. Neuropharmacology. 1993 Mar;32(3):205–208. doi: 10.1016/0028-3908(93)90101-8. [DOI] [PubMed] [Google Scholar]
