Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Nov;110(3):1149–1155. doi: 10.1111/j.1476-5381.1993.tb13934.x

R56865 inhibits catecholamine release from bovine chromaffin cells by blocking calcium channels.

L Garcez-Do-Carmo 1, A Albillos 1, A R Artalejo 1, M T de la Fuente 1, M G López 1, L Gandía 1, P Michelena 1, A G García 1
PMCID: PMC2175812  PMID: 8298803

Abstract

1. The effects of R56865 (a new class of cardioprotective agent which prevents Na+ and Ca2+ overload in cardiac myocytes) on catecholamine release, whole-cell current through Ca2+ channels (IBa) and cytosolic Ca2+ concentrations, [Ca2+]i, have been studied in bovine chromaffin cells. 2. R56865 caused a time- and concentration-dependent blockade of catecholamine release from superfused cells stimulated intermittently with 5 s pulses of 59 mM K+. After 5 min superfusion, a 3 microM concentration inhibited secretion by 20%; the blockade increased gradually with perfusion time, to reach 85% after 40 min. The IC50 to block secretion after 5 min periods of exposure to increasing concentrations of R56865 was around 3.1 microM. The blocking effects of R56865 were reversible after 5-15 min wash out. In high Ca2+ solution (10 mM Ca2+), the degree of blockade of secretion diminished by 20% in comparison with 1 mM Ca2+. 3. In electroporated cells, R56865 (10 microM) did not modify the secretory response induced by the application of 10 microM free Ca2+. 4. R56865 blocked the peak IBa current in a concentration- and time-dependent manner; its IC50 was very similar to that obtained for secretion (3 microM). The compound not only reduced the size of the peak current but also promoted its inactivation; when the effects of R56865 were measured at the most inactivated part of the current, its IC50 was 1 microM. Both the inactivation and the reduction of the peak currents were reversible upon washing out the drug.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1149

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almers W., Neher E. The Ca signal from fura-2 loaded mast cells depends strongly on the method of dye-loading. FEBS Lett. 1985 Nov 11;192(1):13–18. doi: 10.1016/0014-5793(85)80033-8. [DOI] [PubMed] [Google Scholar]
  2. Artalejo C. R., Bader M. F., Aunis D., García A. G. Inactivation of the early calcium uptake and noradrenaline release evoked by potassium in cultured chromaffin cells. Biochem Biophys Res Commun. 1986 Jan 14;134(1):1–7. doi: 10.1016/0006-291x(86)90518-8. [DOI] [PubMed] [Google Scholar]
  3. Artalejo C. R., Dahmer M. K., Perlman R. L., Fox A. P. Two types of Ca2+ currents are found in bovine chromaffin cells: facilitation is due to the recruitment of one type. J Physiol. 1991 Jan;432:681–707. doi: 10.1113/jphysiol.1991.sp018406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Artalejo C. R., Perlman R. L., Fox A. P. Omega-conotoxin GVIA blocks a Ca2+ current in bovine chromaffin cells that is not of the "classic" N type. Neuron. 1992 Jan;8(1):85–95. doi: 10.1016/0896-6273(92)90110-y. [DOI] [PubMed] [Google Scholar]
  5. Ballesta J. J., Palmero M., Hidalgo M. J., Gutierrez L. M., Reig J. A., Viniegra S., Garcia A. G. Separate binding and functional sites for omega-conotoxin and nitrendipine suggest two types of calcium channels in bovine chromaffin cells. J Neurochem. 1989 Oct;53(4):1050–1056. doi: 10.1111/j.1471-4159.1989.tb07394.x. [DOI] [PubMed] [Google Scholar]
  6. Bean B. P. Classes of calcium channels in vertebrate cells. Annu Rev Physiol. 1989;51:367–384. doi: 10.1146/annurev.ph.51.030189.002055. [DOI] [PubMed] [Google Scholar]
  7. Boarder M. R., Marriott D., Adams M. Stimulus secretion coupling in cultured chromaffin cells. Dependency on external sodium and on dihydropyridine-sensitive calcium channels. Biochem Pharmacol. 1987 Jan 1;36(1):163–167. doi: 10.1016/0006-2952(87)90394-7. [DOI] [PubMed] [Google Scholar]
  8. Bossu J. L., De Waard M., Feltz A. Two types of calcium channels are expressed in adult bovine chromaffin cells. J Physiol. 1991 Jun;437:621–634. doi: 10.1113/jphysiol.1991.sp018615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carbone E., Sher E., Clementi F. Ca currents in human neuroblastoma IMR32 cells: kinetics, permeability and pharmacology. Pflugers Arch. 1990 Apr;416(1-2):170–179. doi: 10.1007/BF00370239. [DOI] [PubMed] [Google Scholar]
  10. Carmeliet E., Tytgat J. Agonistic and antagonistic effect of R56865 on the Na+ channel in cardiac cells. Eur J Pharmacol. 1991 Apr 10;196(1):53–60. doi: 10.1016/0014-2999(91)90408-i. [DOI] [PubMed] [Google Scholar]
  11. Castillo C. J., Fonteríz R. I., López M. G., Rosenheck K., García A. G. (+)-PN200-110 and ouabain binding sites in purified bovine adrenomedullary plasma membranes and chromaffin cells. J Neurochem. 1989 Nov;53(5):1442–1449. doi: 10.1111/j.1471-4159.1989.tb08536.x. [DOI] [PubMed] [Google Scholar]
  12. Ceña V., Nicolas G. P., Sanchez-Garcia P., Kirpekar S. M., Garcia A. G. Pharmacological dissection of receptor-associated and voltage-sensitive ionic channels involved in catecholamine release. Neuroscience. 1983 Dec;10(4):1455–1462. doi: 10.1016/0306-4522(83)90126-4. [DOI] [PubMed] [Google Scholar]
  13. Fenwick E. M., Marty A., Neher E. Sodium and calcium channels in bovine chromaffin cells. J Physiol. 1982 Oct;331:599–635. doi: 10.1113/jphysiol.1982.sp014394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gandía L., Michelena P., de Pascual R., López M. G., García A. G. Different sensitivities to dihydropyridines of catecholamine release from cat and ox adrenals. Neuroreport. 1990 Oct;1(2):119–122. doi: 10.1097/00001756-199010000-00009. [DOI] [PubMed] [Google Scholar]
  15. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  16. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  17. Hess P. Calcium channels in vertebrate cells. Annu Rev Neurosci. 1990;13:337–356. doi: 10.1146/annurev.ne.13.030190.002005. [DOI] [PubMed] [Google Scholar]
  18. Himmel H. M., Wilhelm D., Ravens U. Effects of R56865 on membrane currents in isolated ventricular cardiomyocytes of the guinea-pig. Eur J Pharmacol. 1990 Oct 9;187(2):235–240. doi: 10.1016/0014-2999(90)90010-4. [DOI] [PubMed] [Google Scholar]
  19. Jiménez R. R., López M. G., Sancho C., Maroto R., García A. G. A component of the catecholamine secretory response in the bovine adrenal gland is resistant to dihydropyridines and omega-conotoxin. Biochem Biophys Res Commun. 1993 Mar 31;191(3):1278–1283. doi: 10.1006/bbrc.1993.1355. [DOI] [PubMed] [Google Scholar]
  20. Kilpatrick D. L., Slepetis R. J., Corcoran J. J., Kirshner N. Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J Neurochem. 1982 Feb;38(2):427–435. doi: 10.1111/j.1471-4159.1982.tb08647.x. [DOI] [PubMed] [Google Scholar]
  21. Knight D. E., Kesteven N. T. Evoked transient intracellular free Ca2+ changes and secretion in isolated bovine adrenal medullary cells. Proc R Soc Lond B Biol Sci. 1983 May 23;218(1211):177–199. doi: 10.1098/rspb.1983.0033. [DOI] [PubMed] [Google Scholar]
  22. Leyssens A., Carmeliet E. Block of the transient inward current by R56865 in guinea-pig ventricular myocytes. Eur J Pharmacol. 1991 Apr 10;196(1):43–51. doi: 10.1016/0014-2999(91)90407-h. [DOI] [PubMed] [Google Scholar]
  23. Michelena P., García-Pérez L. E., Artalejo A. R., García A. G. Separation between cytosolic calcium and secretion in chromaffin cells superfused with calcium ramps. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3284–3288. doi: 10.1073/pnas.90.8.3284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miller R. J. Voltage-sensitive Ca2+ channels. J Biol Chem. 1992 Jan 25;267(3):1403–1406. [PubMed] [Google Scholar]
  25. Moro M. A., López M. G., Gandía L., Michelena P., García A. G. Separation and culture of living adrenaline- and noradrenaline-containing cells from bovine adrenal medullae. Anal Biochem. 1990 Mar;185(2):243–248. doi: 10.1016/0003-2697(90)90287-j. [DOI] [PubMed] [Google Scholar]
  26. Swandulla D., Carbone E., Lux H. D. Do calcium channel classifications account for neuronal calcium channel diversity? Trends Neurosci. 1991 Feb;14(2):46–51. doi: 10.1016/0166-2236(91)90018-p. [DOI] [PubMed] [Google Scholar]
  27. Tsien R. W., Ellinor P. T., Horne W. A. Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol Sci. 1991 Sep;12(9):349–354. doi: 10.1016/0165-6147(91)90595-j. [DOI] [PubMed] [Google Scholar]
  28. Ver Donck L., Borgers M. Myocardial protection by R 56865: a new principle based on prevention of ion channel pathology. Am J Physiol. 1991 Dec;261(6 Pt 2):H1828–H1835. doi: 10.1152/ajpheart.1991.261.6.H1828. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES