Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Dec;110(4):1321–1328. doi: 10.1111/j.1476-5381.1993.tb13963.x

Endothelium-dependent noradrenaline-induced relaxation of rat isolated cerebral arteries: pharmacological characterization of receptor subtypes involved.

R G Hempelmann 1, A Ziegler 1
PMCID: PMC2175862  PMID: 8306071

Abstract

1. The endothelium-dependence of catecholamine-induced relaxation of rat cerebral arteries was investigated in vitro. 2. In the basilar artery (BA), the maximal relaxant response was most pronounced with noradrenaline (NA), less with isoprenaline (Iso), and only very little with terbutaline. Methoxamine and the alpha 2-adrenoceptor selective agonists BHT 933 and clonidine, had no relaxant effect. 3. In BA, the relaxation by NA or Iso was markedly attenuated by N omega-nitro-L-arginine (L-NOARG) 10(-4) M. Short term perfusion of the vessels by Triton X 100 (1:1,000) suppressed the NA-induced relaxation. 4. The relaxation induced by NA or Iso was markedly reduced in presence of L-NOARG in the posterior, medial and anterior cerebral artery. 5. In BA, NA-induced relaxation was non-competitively inhibited by propranolol, atenolol, and the beta 1- and beta 2-adrenoceptor selective antagonists, CGP 20712 A and ICI 118551. 6. The relaxant NA-effect was not affected by prazosin but was non-competitively blocked by phentolamine. 7. The Iso-induced relaxation was competitively blocked by propranolol, whereas atenolol, CGP 20712 A and ICI 118551 caused a non-competitive inhibition. 8. The experiments indicate that the catecholamine-induced relaxation in rat isolated cerebral arteries depends upon the endothelium. They suggest that the NA-induced relaxation of BA is mediated by different alpha- and beta-adrenoceptors and that the Iso-induced relaxation is mediated by different beta-receptors. The findings would also be compatible with the idea of a receptor type which cannot be characterized by the pharmacological tools that we have used.

Full text

PDF
1321

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Angus J. A., Cocks T. M., Satoh K. Alpha 2-adrenoceptors and endothelium-dependent relaxation in canine large arteries. Br J Pharmacol. 1986 Aug;88(4):767–777. doi: 10.1111/j.1476-5381.1986.tb16249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ayajiki K., Toda N. Isolated bovine cerebral arteries from rostral and caudal regions: distinct responses to adrenoceptor agonists. Eur J Pharmacol. 1990 Dec 4;191(3):417–425. doi: 10.1016/0014-2999(90)94176-x. [DOI] [PubMed] [Google Scholar]
  4. Ayajiki K., Toda N. Regional difference in the response mediated by beta 1-adrenoceptor subtype in bovine cerebral arteries. J Cereb Blood Flow Metab. 1992 May;12(3):507–513. doi: 10.1038/jcbfm.1992.69. [DOI] [PubMed] [Google Scholar]
  5. Busse R., Pohl U., Mülsch A., Bassenge E. Modulation of the vasodilator action of SIN-1 by the endothelium. J Cardiovasc Pharmacol. 1989;14 (Suppl 11):S81–S85. doi: 10.1097/00005344-198906152-00015. [DOI] [PubMed] [Google Scholar]
  6. Buxton I. L., Cheek D. J., Eckman D., Westfall D. P., Sanders K. M., Keef K. D. NG-nitro L-arginine methyl ester and other alkyl esters of arginine are muscarinic receptor antagonists. Circ Res. 1993 Feb;72(2):387–395. doi: 10.1161/01.res.72.2.387. [DOI] [PubMed] [Google Scholar]
  7. Cocks T. M., Angus J. A. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature. 1983 Oct 13;305(5935):627–630. doi: 10.1038/305627a0. [DOI] [PubMed] [Google Scholar]
  8. Edvinsson L., Lacombe P., Owman C., Reynier-Rebuffel A. M., Seylaz J. Quantitative changes in regional cerebral blood flow of rats induced by alpha- and beta-adrenergic stimulants. Acta Physiol Scand. 1979 Dec;107(4):289–296. doi: 10.1111/j.1748-1716.1979.tb06478.x. [DOI] [PubMed] [Google Scholar]
  9. Edvinsson L., Owman C. Pharmacological characterization of adrenergic alpha and beta receptors mediating the vasomotor responses of cerebral arteries in vitro. Circ Res. 1974 Dec;35(6):835–849. doi: 10.1161/01.res.35.6.835. [DOI] [PubMed] [Google Scholar]
  10. Faraci F. M. Role of nitric oxide in regulation of basilar artery tone in vivo. Am J Physiol. 1990 Oct;259(4 Pt 2):H1216–H1221. doi: 10.1152/ajpheart.1990.259.4.H1216. [DOI] [PubMed] [Google Scholar]
  11. Flavahan N. A., Vanhoutte P. M. Mechanism underlying the inhibitory interaction between the nitrovasodilator SIN-1 and the endothelium. J Cardiovasc Pharmacol. 1989;14 (Suppl 11):S86–S90. [PubMed] [Google Scholar]
  12. Furchgott R. F. Role of endothelium in responses of vascular smooth muscle. Circ Res. 1983 Nov;53(5):557–573. doi: 10.1161/01.res.53.5.557. [DOI] [PubMed] [Google Scholar]
  13. Furchgott R. F. The 1989 Ulf von Euler lecture. Studies on endothelium-dependent vasodilation and the endothelium-derived relaxing factor. Acta Physiol Scand. 1990 Jun;139(2):257–270. doi: 10.1111/j.1748-1716.1990.tb08923.x. [DOI] [PubMed] [Google Scholar]
  14. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  15. Gardiner S. M., Kemp P. A., Bennett T. Effects of NG-nitro-L-arginine methyl ester on vasodilator responses to acetylcholine, 5'-N-ethylcarboxamidoadenosine or salbutamol in conscious rats. Br J Pharmacol. 1991 Jul;103(3):1725–1732. doi: 10.1111/j.1476-5381.1991.tb09854.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gardiner S. M., Kemp P. A., Bennett T. Effects of NG-nitro-L-arginine methyl ester on vasodilator responses to adrenaline or BRL 38227 in conscious rats. Br J Pharmacol. 1991 Nov;104(3):731–737. doi: 10.1111/j.1476-5381.1991.tb12496.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gaw A. J., Wadsworth R. M. Pharmacological characterization of postjunctional alpha-adrenoceptors in cerebral arteries from the sheep. Br J Pharmacol. 1989 Nov;98(3):741–746. doi: 10.1111/j.1476-5381.1989.tb14601.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Graves J., Poston L. Beta-adrenoceptor agonist mediated relaxation of rat isolated resistance arteries: a role for the endothelium and nitric oxide. Br J Pharmacol. 1993 Mar;108(3):631–637. doi: 10.1111/j.1476-5381.1993.tb12853.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gray D. W., Marshall I. Novel signal transduction pathway mediating endothelium-dependent beta-adrenoceptor vasorelaxation in rat thoracic aorta. Br J Pharmacol. 1992 Nov;107(3):684–690. doi: 10.1111/j.1476-5381.1992.tb14507.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gustafsson H., Mulvany M. J., Nilsson H. Rhythmic contractions of isolated small arteries from rat: influence of the endothelium. Acta Physiol Scand. 1993 Jun;148(2):153–163. doi: 10.1111/j.1748-1716.1993.tb09545.x. [DOI] [PubMed] [Google Scholar]
  21. Hamel E., Edvinsson L., MacKenzie E. T. Heterogeneous vasomotor responses of anatomically distinct feline cerebral arteries. Br J Pharmacol. 1988 Jun;94(2):423–436. doi: 10.1111/j.1476-5381.1988.tb11544.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Harder D. R., Abel P. W., Hermsmeyer K. Membrane electrical mechanism of basilar artery constriction and pial artery dilation by norepinephrine. Circ Res. 1981 Dec;49(6):1237–1242. doi: 10.1161/01.res.49.6.1237. [DOI] [PubMed] [Google Scholar]
  23. Heesen B. J., De Mey J. G. Effects of cyclic AMP-affecting agents on contractile reactivity of isolated mesenteric and renal resistance arteries of the rat. Br J Pharmacol. 1990 Dec;101(4):859–864. doi: 10.1111/j.1476-5381.1990.tb14171.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jackson W. F., Mülsch A., Busse R. Rhythmic smooth muscle activity in hamster aortas is mediated by continuous release of NO from the endothelium. Am J Physiol. 1991 Jan;260(1 Pt 2):H248–H253. doi: 10.1152/ajpheart.1991.260.1.H248. [DOI] [PubMed] [Google Scholar]
  25. Kamata K., Miyata N., Kasuya Y. Involvement of endothelial cells in relaxation and contraction responses of the aorta to isoproterenol in naive and streptozotocin-induced diabetic rats. J Pharmacol Exp Ther. 1989 Jun;249(3):890–894. [PubMed] [Google Scholar]
  26. Kitazono T., Faraci F. M., Heistad D. D. Effect of norepinephrine on rat basilar artery in vivo. Am J Physiol. 1993 Jan;264(1 Pt 2):H178–H182. doi: 10.1152/ajpheart.1993.264.1.H178. [DOI] [PubMed] [Google Scholar]
  27. Lüscher T. F., Richard V., Yang Z. H. Interaction between endothelium-derived nitric oxide and SIN-1 in human and porcine blood vessels. J Cardiovasc Pharmacol. 1989;14 (Suppl 11):S76–S80. [PubMed] [Google Scholar]
  28. Marín J., Sánchez-Ferrer C. F. Role of endothelium-formed nitric oxide on vascular responses. Gen Pharmacol. 1990;21(5):575–587. doi: 10.1016/0306-3623(90)91002-9. [DOI] [PubMed] [Google Scholar]
  29. McPherson G. A. Assessing vascular reactivity of arteries in the small vessel myograph. Clin Exp Pharmacol Physiol. 1992 Dec;19(12):815–825. doi: 10.1111/j.1440-1681.1992.tb00420.x. [DOI] [PubMed] [Google Scholar]
  30. McPherson G. A., Stork A. P. The resistance of some rat cerebral arteries to the vasorelaxant effect of cromakalim and other K+ channel openers. Br J Pharmacol. 1992 Jan;105(1):51–58. doi: 10.1111/j.1476-5381.1992.tb14209.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  32. Mulvany M. J., Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res. 1977 Jul;41(1):19–26. doi: 10.1161/01.res.41.1.19. [DOI] [PubMed] [Google Scholar]
  33. Mülsch A., Busse R. NG-nitro-L-arginine (N5-[imino(nitroamino)methyl]-L-ornithine) impairs endothelium-dependent dilations by inhibiting cytosolic nitric oxide synthesis from L-arginine. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jan-Feb;341(1-2):143–147. doi: 10.1007/BF00195071. [DOI] [PubMed] [Google Scholar]
  34. Nyborg N. C. Action of noradrenaline on isolated proximal and distal coronary arteries of rat: selective release of endothelium-derived relaxing factor in proximal arteries. Br J Pharmacol. 1990 Jul;100(3):552–556. doi: 10.1111/j.1476-5381.1990.tb15845.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Omote M., Kajimoto N., Mizusawa H. The role of endothelium in the phenylephrine-induced oscillatory responses of rabbit mesenteric arteries. Jpn J Pharmacol. 1992 May;59(1):37–41. doi: 10.1254/jjp.59.37. [DOI] [PubMed] [Google Scholar]
  36. Vanhoutte P. M., Miller V. M. Heterogeneity of endothelium-dependent responses in mammalian blood vessels. J Cardiovasc Pharmacol. 1985;7 (Suppl 3):S12–S23. doi: 10.1097/00005344-198500073-00002. [DOI] [PubMed] [Google Scholar]
  37. Webber S. E., Stock M. J. Evidence for an atypical, or beta 3-adrenoceptor in ferret tracheal epithelium. Br J Pharmacol. 1992 Apr;105(4):857–862. doi: 10.1111/j.1476-5381.1992.tb09068.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Winquist R. J., Bohr D. F. Characterization of the rat basilar artery in vitro. Experientia. 1982 Oct 15;38(10):1187–1188. doi: 10.1007/BF01959732. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES