Abstract
1. The contractile effects of the novel cardiotonic agent HN-10200 (2-[3-methoxy-5-methylsulphinyl-2-thienyl]-1H-imidazo-[4,5-c]-p yri dine hydrochloride), were examined and comparisons made with the responses obtained to a structurally similar compound, sulmazole, and to a number of other compounds which are known to inhibit phosphodiesterase (PDE) isoenzymes with differing selectivities; namely, enoximone (PDE III inhibitor), Ro 20-1724 (PDE IV inhibitor) and 3-isobutyl-1-methylxanthine (non-selective PDE inhibitor). 2. Contractile function, as measured by mechanical shortening, and biochemical systems involving cyclic AMP were investigated in ventricular cardiomyocytes isolated from adult Sprague-Dawley rats (200-250 g). 3. HN-10200 exerted a concentration-dependent (10(-8) M-10(-4) M) positive contractile effect, which was independent of alpha- or beta-adrenoceptor, or histamine receptor stimulation. 4. The efficacies of the contractile responses to the PDE inhibitors were of the order: HN-10200 > IBMX > sulmazole > enoximone and maximum stimulations, which were obtained at concentrations of 10(-4) M, were 54 +/- 4%, 41 +/- 7%, 38 +/- 7% and 26 +/- 5% (mean +/- s.e.) greater than basal levels, respectively (n = 6); the basal value of contractile amplitude (dL), in the absence of PDE inhibitors was 7.39 +/- 0.18% (mean +/- s.e.). Ro 20-1724 did not have any effect on contractile activity. 5. Due to low basal levels of cyclic nucleotides in isolated cells, accumulation of cyclic AMP due to the presence of the PDE inhibitors was detected only when the levels of cyclic nucleotide were enhanced with forskolin (10 microM).(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahn H. S., Eardley D., Watkins R., Prioli N. Effects of several newer cardiotonic drugs on cardiac cyclic AMP metabolism. Biochem Pharmacol. 1986 Apr 1;35(7):1113–1121. doi: 10.1016/0006-2952(86)90147-4. [DOI] [PubMed] [Google Scholar]
- Azuma J., Harada H., Sawamura A., Hasegawa H., Kishimoto S., Sperelakis N. Concentration-dependent effect of trapidil on slow action potentials in cardiac muscle. J Mol Cell Cardiol. 1983 Jan;15(1):43–52. doi: 10.1016/0022-2828(83)90306-1. [DOI] [PubMed] [Google Scholar]
- Beavo J. A. Multiple isozymes of cyclic nucleotide phosphodiesterase. Adv Second Messenger Phosphoprotein Res. 1988;22:1–38. [PubMed] [Google Scholar]
- Beavo J. A., Reifsnyder D. H. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci. 1990 Apr;11(4):150–155. doi: 10.1016/0165-6147(90)90066-H. [DOI] [PubMed] [Google Scholar]
- Bethke T., Brunkhorst D., von der Leyen H., Meyer W., Nigbur R., Scholz H. Mechanism of action and cardiotonic activity of a new phosphodiesterase inhibitor, the benzimidazole derivative adibendan (BM 14.478), in guinea-pig hearts. Naunyn Schmiedebergs Arch Pharmacol. 1988 May;337(5):576–582. doi: 10.1007/BF00182735. [DOI] [PubMed] [Google Scholar]
- Bode D. C., Kanter J. R., Brunton L. L. Cellular distribution of phosphodiesterase isoforms in rat cardiac tissue. Circ Res. 1991 Apr;68(4):1070–1079. doi: 10.1161/01.res.68.4.1070. [DOI] [PubMed] [Google Scholar]
- Brasch H., Iven H. Inotropic and electrophysiological effects of BDF 9148, a congener of DPI 201-106, in guinea-pig atria and papillary muscles. Br J Pharmacol. 1991 Aug;103(4):1939–1945. doi: 10.1111/j.1476-5381.1991.tb12356.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bristow M. R., Ginsburg R., Strosberg A., Montgomery W., Minobe W. Pharmacology and inotropic potential of forskolin in the human heart. J Clin Invest. 1984 Jul;74(1):212–223. doi: 10.1172/JCI111404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buschmans E., Hearse D. J., Manning A. S. Forskolin: effects on cyclic AMP and contractile function in the isolated rat and guinea pig heart. Can J Cardiol. 1985 Nov-Dec;1(6):385–394. [PubMed] [Google Scholar]
- Colucci W. S., Wright R. F., Braunwald E. New positive inotropic agents in the treatment of congestive heart failure. Mechanisms of action and recent clinical developments. 1. N Engl J Med. 1986 Jan 30;314(5):290–299. doi: 10.1056/NEJM198601303140506. [DOI] [PubMed] [Google Scholar]
- Endoh M., Yanagisawa T., Morita T., Taira N. Differential effects of sulmazole (AR-L 115 BS) on contractile force and cyclic AMP levels in canine ventricular muscle: comparison with MDL 17,043. J Pharmacol Exp Ther. 1985 Jul;234(1):267–273. [PubMed] [Google Scholar]
- Endoh M., Yanagisawa T., Taira N. Dissociation of cyclic AMP and contractile responses to isoprenaline: effects of a dihydropyridine derivative, nicardipine (YC-93), on canine ventricular muscle. Eur J Pharmacol. 1980 Oct 17;67(2-3):225–233. doi: 10.1016/0014-2999(80)90502-6. [DOI] [PubMed] [Google Scholar]
- Evans D. B. Modulation of cAMP: mechanism for positive inotropic action. J Cardiovasc Pharmacol. 1986;8 (Suppl 9):S22–S29. [PubMed] [Google Scholar]
- Fujino K., Sperelakis N., Solaro R. J. Sensitization of dog and guinea pig heart myofilaments to Ca2+ activation and the inotropic effect of pimobendan: comparison with milrinone. Circ Res. 1988 Nov;63(5):911–922. doi: 10.1161/01.res.63.5.911. [DOI] [PubMed] [Google Scholar]
- George E. E., Romano F. D., Dobson J. G., Jr Adenosine and acetylcholine reduce isoproterenol-induced protein phosphorylation of rat myocytes. J Mol Cell Cardiol. 1991 Jun;23(6):749–764. doi: 10.1016/0022-2828(91)90984-t. [DOI] [PubMed] [Google Scholar]
- Grima M., Beguin M. F., Millanvoye-Van Brussel E. M., Decker N., Schwartz J. Effects on the sodium channel of some new cardiotonic drugs: the 4-, 5-, and 6-pyridyl-2(1H)-quinolone derivatives. J Cardiovasc Pharmacol. 1988 Sep;12(3):255–263. doi: 10.1097/00005344-198809000-00001. [DOI] [PubMed] [Google Scholar]
- Haleen S. J., Steffen R. P., Weishaar R. E. Species differences in the positive inotropic response to DPI 201-106, a novel cardiotonic agent. Can J Physiol Pharmacol. 1989 Nov;67(11):1460–1463. doi: 10.1139/y89-235. [DOI] [PubMed] [Google Scholar]
- Harris A. L., Connell M. J., Ferguson E. W., Wallace A. M., Gordon R. J., Pagani E. D., Silver P. J. Role of low Km cyclic AMP phosphodiesterase inhibition in tracheal relaxation and bronchodilation in the guinea pig. J Pharmacol Exp Ther. 1989 Oct;251(1):199–206. [PubMed] [Google Scholar]
- Hartmann A., Saeed M., Sütsch G., Bing R. J. Phosphodiesterasehemmung als neues positiv-inotropes Prinzip. Dtsch Med Wochenschr. 1986 Dec 19;111(51-52):1971–1977. doi: 10.1055/s-2008-1068746. [DOI] [PubMed] [Google Scholar]
- Herzig J. W., Feile K., Rüegg J. C. Activating effects of AR-L 115 BS on the Ca2+ sensitive force, stiffness and unloaded shortening velocity (Vmax) in isolated contractile structures from mammalian heart muscle. Arzneimittelforschung. 1981;31(1A):188–191. [PubMed] [Google Scholar]
- Hohl C. M., Li Q. A. Compartmentation of cAMP in adult canine ventricular myocytes. Relation to single-cell free Ca2+ transients. Circ Res. 1991 Nov;69(5):1369–1379. doi: 10.1161/01.res.69.5.1369. [DOI] [PubMed] [Google Scholar]
- Holmberg S. R., Williams A. J. Phosphodiesterase inhibitors and the cardiac sarcoplasmic reticulum calcium release channel: differential effects of milrinone and enoximone. Cardiovasc Res. 1991 Jul;25(7):537–545. doi: 10.1093/cvr/25.7.537. [DOI] [PubMed] [Google Scholar]
- Horackova M., Mapplebeck C. Electrical, contractile, and ultrastructural properties of adult rat and guinea-pig ventricular myocytes in long-term primary cultures. Can J Physiol Pharmacol. 1989 Jul;67(7):740–750. doi: 10.1139/y89-119. [DOI] [PubMed] [Google Scholar]
- Hsieh C. P., Kariya T., Dage R. C., Ruberg S. J. Effects of enoximone and isobutylmethylxanthine on contractile tension and cyclic nucleotide levels in isolated blood-perfused dog papillary muscle. J Cardiovasc Pharmacol. 1987 Feb;9(2):230–236. doi: 10.1097/00005344-198702000-00017. [DOI] [PubMed] [Google Scholar]
- Hubbard J. W., Conway P. G., Nordstrom L. C., Hartman H. B., Lebedinsky Y., O'Malley G. J., Kosley R. W., Jr Cardiac adenylate cyclase activity, positive chronotropic and inotropic effects of forskolin analogs with either low, medium or high binding site affinity. J Pharmacol Exp Ther. 1991 Feb;256(2):621–627. [PubMed] [Google Scholar]
- Katano Y., Endoh M. Differential effects of Ro 20-1724 and isobutylmethylxanthine on the basal force of contraction and beta-adrenoceptor-mediated response in the rat ventricular myocardium. Biochem Biophys Res Commun. 1990 Feb 28;167(1):123–129. doi: 10.1016/0006-291x(90)91739-f. [DOI] [PubMed] [Google Scholar]
- Kitada Y., Kobayashi M., Narimatsu A., Ohizumi Y. Potent stimulation of myofilament force and adenosine triphosphatase activity of canine cardiac muscle through a direct enhancement of troponin C Ca++ binding by MCI-154, a novel cardiotonic agent. J Pharmacol Exp Ther. 1989 Jul;250(1):272–277. [PubMed] [Google Scholar]
- Kitada Y., Narimatsu A., Suzuki R., Endoh M., Taira N. Does the positive inotropic action of a novel cardiotonic agent, MCI-154, involve mechanisms other than cyclic AMP? J Pharmacol Exp Ther. 1987 Nov;243(2):639–645. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lindner E., Metzger H. The action of forskolin on muscle cells is modified by hormones, calcium ions and calcium antagonists. Arzneimittelforschung. 1983;33(10):1436–1441. [PubMed] [Google Scholar]
- Millar B. C., Piper H. M., McDermott B. J. The antiadrenergic effect of neuropeptide Y on the ventricular cardiomyocyte. Naunyn Schmiedebergs Arch Pharmacol. 1988 Oct;338(4):426–429. doi: 10.1007/BF00172122. [DOI] [PubMed] [Google Scholar]
- Muller B., Lugnier C., Stoclet J. C. Involvement of rolipram-sensitive cyclic AMP phosphodiesterase in the regulation of cardiac contraction. J Cardiovasc Pharmacol. 1990 Nov;16(5):796–803. doi: 10.1097/00005344-199011000-00016. [DOI] [PubMed] [Google Scholar]
- Mylotte K. M., Cody V., Davis P. J., Davis F. B., Blas S. D., Schoenl M. Milrinone and thyroid hormone stimulate myocardial membrane Ca2+-ATPase activity and share structural homologies. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7974–7978. doi: 10.1073/pnas.82.23.7974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholson C. D., Challiss R. A., Shahid M. Differential modulation of tissue function and therapeutic potential of selective inhibitors of cyclic nucleotide phosphodiesterase isoenzymes. Trends Pharmacol Sci. 1991 Jan;12(1):19–27. doi: 10.1016/0165-6147(91)90484-a. [DOI] [PubMed] [Google Scholar]
- Ohnishi S. T., Barr J. K. A simplified method of quantitating protein using the biuret and phenol reagents. Anal Biochem. 1978 May;86(1):193–200. doi: 10.1016/0003-2697(78)90334-2. [DOI] [PubMed] [Google Scholar]
- Parsons W. J., Ramkumar V., Stiles G. L. The new cardiotonic agent sulmazole is an A1 adenosine receptor antagonist and functionally blocks the inhibitory regulator, Gi. Mol Pharmacol. 1988 Apr;33(4):441–448. [PubMed] [Google Scholar]
- Piper H. M., Millar B. C., McDermott B. J. The negative inotropic effect of neuropeptide Y on the ventricular cardiomyocyte. Naunyn Schmiedebergs Arch Pharmacol. 1989 Sep;340(3):333–337. doi: 10.1007/BF00168519. [DOI] [PubMed] [Google Scholar]
- Piper H. M., Probst I., Schwartz P., Hütter F. J., Spieckermann P. G. Culturing of calcium stable adult cardiac myocytes. J Mol Cell Cardiol. 1982 Jul;14(7):397–412. doi: 10.1016/0022-2828(82)90171-7. [DOI] [PubMed] [Google Scholar]
- Powell T., Tatham P. E., Twist V. W. Cytoplasmic free calcium measured by quin2 fluorescence in isolated ventricular myocytes at rest and during potassium-depolarization. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1012–1020. doi: 10.1016/0006-291x(84)91192-6. [DOI] [PubMed] [Google Scholar]
- Powell T., Twist V. W. A rapid technique for the isolation and purification of adult cardiac muscle cells having respiratory control and a tolerance to calcium. Biochem Biophys Res Commun. 1976 Sep 7;72(1):327–333. doi: 10.1016/0006-291x(76)90997-9. [DOI] [PubMed] [Google Scholar]
- Prigent A. F., Fougier S., Nemoz G., Anker G., Pacheco H., Lugnier C., Lebec A., Stoclet J. C. Comparison of cyclic nucleotide phosphodiesterase isoforms from rat heart and bovine aorta. Separation and inhibition by selective reference phosphodiesterase inhibitors. Biochem Pharmacol. 1988 Oct 1;37(19):3671–3681. doi: 10.1016/0006-2952(88)90400-5. [DOI] [PubMed] [Google Scholar]
- Rapundalo S. T., Lathrop D. A., Harrison S. A., Beavo J. A., Schwartz A. Cyclic AMP-dependent and cyclic AMP-independent actions of a novel cardiotonic agent, OPC-8212. Naunyn Schmiedebergs Arch Pharmacol. 1988 Dec;338(6):692–698. doi: 10.1007/BF00165636. [DOI] [PubMed] [Google Scholar]
- Reeves M. L., Leigh B. K., England P. J. The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors. Biochem J. 1987 Jan 15;241(2):535–541. doi: 10.1042/bj2410535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodger I. W., Shahid M. Forskolin, cyclic nucleotides and positive inotropism in isolated papillary muscles of the rabbit. Br J Pharmacol. 1984 Jan;81(1):151–159. doi: 10.1111/j.1476-5381.1984.tb10755.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rüegg J. C., Morano I. Calcium-sensitivity modulation of cardiac myofibrillar proteins. J Cardiovasc Pharmacol. 1989;14 (Suppl 3):S20–S23. doi: 10.1097/00005344-198914003-00005. [DOI] [PubMed] [Google Scholar]
- Seamon K., Daly J. W. Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J Biol Chem. 1981 Oct 10;256(19):9799–9801. [PubMed] [Google Scholar]
- Shahid M., Wilson M., Nicholson C. D., Marshall R. J. Species-dependent differences in the properties of particulate cyclic nucleotide phosphodiesterase from rat and rabbit ventricular myocardium. J Pharm Pharmacol. 1990 Apr;42(4):283–284. doi: 10.1111/j.2042-7158.1990.tb05409.x. [DOI] [PubMed] [Google Scholar]
- Silver P. J., Harris A. L., Canniff P. C., Lepore R. E., Bentley R. G., Hamel L. T., Evans D. B. Phosphodiesterase isozyme inhibition, activation of the cAMP system, and positive inotropy mediated by milrinone in isolated guinea pig cardiac muscle. J Cardiovasc Pharmacol. 1989 Apr;13(4):530–540. [PubMed] [Google Scholar]
- Solaro R. J., Rüegg J. C. Stimulation of Ca++ binding and ATPase activity of dog cardiac myofibrils by AR-L 115BS, a novel cardiotonic agent. Circ Res. 1982 Sep;51(3):290–294. doi: 10.1161/01.res.51.3.290. [DOI] [PubMed] [Google Scholar]
- Thompson W. J. Cyclic nucleotide phosphodiesterases: pharmacology, biochemistry and function. Pharmacol Ther. 1991;51(1):13–33. doi: 10.1016/0163-7258(91)90039-o. [DOI] [PubMed] [Google Scholar]
- Tovey K. C., Oldham K. G., Whelan J. A. A simple direct assay for cyclic AMP in plasma and other biological samples using an improved competitive protein binding technique. Clin Chim Acta. 1974 Nov 8;56(3):221–234. doi: 10.1016/0009-8981(74)90133-8. [DOI] [PubMed] [Google Scholar]
- Verrijk R., Vleeming W., van Rooij H. H., Wemer J., Porsius A. J. Positive inotropic effects of milrinone, sulmazole and AR-L100 on isolated normal and infarcted hearts of the rat. Arch Int Pharmacodyn Ther. 1989 Jan-Feb;297:7–17. [PubMed] [Google Scholar]
- Waldeck B., Widmark E. Comparison of the effects of forskolin and isoprenaline on tracheal, cardiac and skeletal muscles from guinea-pig. Eur J Pharmacol. 1985 Jun 19;112(3):349–353. doi: 10.1016/0014-2999(85)90780-0. [DOI] [PubMed] [Google Scholar]
- Weishaar R. E., Burrows S. D., Kobylarz D. C., Quade M. M., Evans D. B. Multiple molecular forms of cyclic nucleotide phosphodiesterase in cardiac and smooth muscle and in platelets. Isolation, characterization, and effects of various reference phosphodiesterase inhibitors and cardiotonic agents. Biochem Pharmacol. 1986 Mar 1;35(5):787–800. doi: 10.1016/0006-2952(86)90247-9. [DOI] [PubMed] [Google Scholar]
- Weishaar R. E., Cain M. H., Bristol J. A. A new generation of phosphodiesterase inhibitors: multiple molecular forms of phosphodiesterase and the potential for drug selectivity. J Med Chem. 1985 May;28(5):537–545. doi: 10.1021/jm50001a001. [DOI] [PubMed] [Google Scholar]
- Weishaar R. E., Kobylarz-Singer D. C., Kaplan H. R. Subclasses of cyclic AMP phosphodiesterase in cardiac muscle. J Mol Cell Cardiol. 1987 Oct;19(10):1025–1036. doi: 10.1016/s0022-2828(87)80574-6. [DOI] [PubMed] [Google Scholar]
- Williams A. J., Holmberg S. R. Sulmazole (AR-L 115BS) activates the sheep cardiac muscle sarcoplasmic reticulum calcium-release channel in the presence and absence of calcium. J Membr Biol. 1990 May;115(2):167–178. doi: 10.1007/BF01869455. [DOI] [PubMed] [Google Scholar]
