Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Oct;110(2):903–909. doi: 10.1111/j.1476-5381.1993.tb13898.x

Electrophysiological actions of alfentanil: intracellular studies in the rat locus coeruleus neurones.

T H Chiu 1, M H Yeh 1, S K Tsai 1, M S Mok 1
PMCID: PMC2175910  PMID: 8242265

Abstract

1. The electrophysiological effects of alfentanil on 156 neurones of the rat locus coeruleus were investigated by use of intracellular recordings from the in vitro brain slice preparation. 2. Bath application of alfentanil (5-100 nM) reversibly decreased the firing rate of all neurones tested in a dose-dependent manner, with an IC50 4.1.nM. 3. Based on inhibition of the spontaneous firing rate, alfentanil was 22 times more potent than morphine. 4. At 100 nM, alfentanil produced a complete inhibition of firing of all neurones tested (n = 62); the inhibition was accompanied by a membrane hyperpolarization 17.0 +/- 0.8 mV (range 6.1-30.3 mV, n = 62) and a reduction in input resistance 26.4 +/- 1.7% (range 6.5-53%, n = 51). 5. The effects of alfentanil were antagonized by naloxone, with a dissociation equilibrium constant of 2.7 +/- 0.4 nM (n = 6). 6. The reversal potential for the alfentanil-induced hyperpolarization was -110 +/- 2 mV (n = 9), which is approximately the potassium equilibrium potential. 7. The alfentanil-induced hyperpolarization was blocked by caesium chloride and barium chloride. 8. These results indicate that alfentanil binds to mu-opioid receptors on the cell membrane of neurones of the locus coeruleus. This leads to opening of the inward-going rectification potassium channels, resulting in the observed hyperpolarization of the membrane.

Full text

PDF
903

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amaral D. G., Sinnamon H. M. The locus coeruleus: neurobiology of a central noradrenergic nucleus. Prog Neurobiol. 1977;9(3):147–196. doi: 10.1016/0301-0082(77)90016-8. [DOI] [PubMed] [Google Scholar]
  2. Andrade R., Aghajanian G. K. Locus coeruleus activity in vitro: intrinsic regulation by a calcium-dependent potassium conductance but not alpha 2-adrenoceptors. J Neurosci. 1984 Jan;4(1):161–170. doi: 10.1523/JNEUROSCI.04-01-00161.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berg-Johnsen J., Langmoen I. A. Isoflurane hyperpolarizes neurones in rat and human cerebral cortex. Acta Physiol Scand. 1987 Aug;130(4):679–685. doi: 10.1111/j.1748-1716.1987.tb08192.x. [DOI] [PubMed] [Google Scholar]
  4. Bodnar R. J., Williams C. L., Lee S. J., Pasternak G. W. Role of mu 1-opiate receptors in supraspinal opiate analgesia: a microinjection study. Brain Res. 1988 Apr 26;447(1):25–34. doi: 10.1016/0006-8993(88)90962-6. [DOI] [PubMed] [Google Scholar]
  5. Bodnar R., Paul D., Pasternak G. W. Synergistic analgesic interactions between the periaqueductal gray and the locus coeruleus. Brain Res. 1991 Sep 6;558(2):224–230. doi: 10.1016/0006-8993(91)90772-n. [DOI] [PubMed] [Google Scholar]
  6. Chiu T. H., Chen T. Y., Ho C. L., Chiang S. T. Electrophysiological effects of dermorphin on locus coeruleus neurons of rat. Neuropharmacology. 1990 Aug;29(8):747–755. doi: 10.1016/0028-3908(90)90128-e. [DOI] [PubMed] [Google Scholar]
  7. Constanti A., Galvan M. Fast inward-rectifying current accounts for anomalous rectification in olfactory cortex neurones. J Physiol. 1983 Feb;335:153–178. doi: 10.1113/jphysiol.1983.sp014526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cookson R. F., Niemegeers C. J., Vanden Bussche G. The development of alfentanil. Br J Anaesth. 1983;55 (Suppl 2):147S–155S. [PubMed] [Google Scholar]
  9. Dong X. W., Shen E. Origin of monoaminergic innervation of the nucleus raphe magnus--a combined monoamine histochemistry and fluorescent retrograde tracing study in the rat. Sci Sin B. 1986 Jun;29(6):599–608. [PubMed] [Google Scholar]
  10. Fields H. L., Barbaro N. M., Heinricher M. M. Brain stem neuronal circuitry underlying the antinociceptive action of opiates. Prog Brain Res. 1988;77:245–257. doi: 10.1016/s0079-6123(08)62792-2. [DOI] [PubMed] [Google Scholar]
  11. Fields H. L., Heinricher M. M., Mason P. Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci. 1991;14:219–245. doi: 10.1146/annurev.ne.14.030191.001251. [DOI] [PubMed] [Google Scholar]
  12. Finley J. C., Lindström P., Petrusz P. Immunocytochemical localization of beta-endorphin-containing neurons in the rat brain. Neuroendocrinology. 1981 Jul;33(1):28–42. doi: 10.1159/000123197. [DOI] [PubMed] [Google Scholar]
  13. Heinricher M. M., Morgan M. M., Fields H. L. Direct and indirect actions of morphine on medullary neurons that modulate nociception. Neuroscience. 1992;48(3):533–543. doi: 10.1016/0306-4522(92)90400-v. [DOI] [PubMed] [Google Scholar]
  14. Hewson G., Bradley P. B. The effects of anilidopiperidine analgesics on single respiratory and non-respiratory neurones in the brain stem of the rat. Life Sci. 1982 Nov 15;31(20-21):2335–2338. doi: 10.1016/0024-3205(82)90150-3. [DOI] [PubMed] [Google Scholar]
  15. Jones S. L. Descending noradrenergic influences on pain. Prog Brain Res. 1991;88:381–394. doi: 10.1016/s0079-6123(08)63824-8. [DOI] [PubMed] [Google Scholar]
  16. Leysen J. E., Gommeren W., Niemegeers C. J. [3H]Sufentanil, a superior ligand for mu-opiate receptors: binding properties and regional distribution in rat brain and spinal cord. Eur J Pharmacol. 1983 Feb 18;87(2-3):209–225. doi: 10.1016/0014-2999(83)90331-x. [DOI] [PubMed] [Google Scholar]
  17. Lipp J. Possible mechanisms of morphine analgesia. Clin Neuropharmacol. 1991 Apr;14(2):131–147. doi: 10.1097/00002826-199104000-00003. [DOI] [PubMed] [Google Scholar]
  18. Loose M. D., Kelly M. J. Opioids act at mu-receptors to hyperpolarize arcuate neurons via an inwardly rectifying potassium conductance. Brain Res. 1990 Apr 9;513(1):15–23. doi: 10.1016/0006-8993(90)91084-t. [DOI] [PubMed] [Google Scholar]
  19. Léger L., Charnay Y., Chayvialle J. A., Bérod A., Dray F., Pujol J. F., Jouvet M., Dubois P. M. Localization of substance P- and enkephalin-like immunoreactivity in relation to catecholamine-containing cell bodies in the cat dorsolateral pontine tegmentum: an immunofluorescence study. Neuroscience. 1983 Mar;8(3):525–546. doi: 10.1016/0306-4522(83)90197-5. [DOI] [PubMed] [Google Scholar]
  20. McFadzean I., Lacey M. G., Hill R. G., Henderson G. Kappa opioid receptor activation depresses excitatory synaptic input to rat locus coeruleus neurons in vitro. Neuroscience. 1987 Jan;20(1):231–239. doi: 10.1016/0306-4522(87)90015-7. [DOI] [PubMed] [Google Scholar]
  21. Mihara S., North R. A., Surprenant A. Somatostatin increases an inwardly rectifying potassium conductance in guinea-pig submucous plexus neurones. J Physiol. 1987 Sep;390:335–355. doi: 10.1113/jphysiol.1987.sp016704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nicoll R. A., Madison D. V. General anesthetics hyperpolarize neurons in the vertebrate central nervous system. Science. 1982 Sep 10;217(4564):1055–1057. doi: 10.1126/science.7112112. [DOI] [PubMed] [Google Scholar]
  23. North R. A., Williams J. T. On the potassium conductance increased by opioids in rat locus coeruleus neurones. J Physiol. 1985 Jul;364:265–280. doi: 10.1113/jphysiol.1985.sp015743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. North R. A., Williams J. T., Surprenant A., Christie M. J. Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5487–5491. doi: 10.1073/pnas.84.15.5487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. O'Beirne M., Gurevich N., Carlen P. L. Pentobarbital inhibits hippocampal neurons by increasing potassium conductance. Can J Physiol Pharmacol. 1987 Jan;65(1):36–41. doi: 10.1139/y87-007. [DOI] [PubMed] [Google Scholar]
  26. Osmanović S. S., Shefner S. A. Anomalous rectification in rat locus coeruleus neurons. Brain Res. 1987 Aug 4;417(1):161–166. doi: 10.1016/0006-8993(87)90193-4. [DOI] [PubMed] [Google Scholar]
  27. Pan Z. Z., Williams J. T., Osborne P. B. Opioid actions on single nucleus raphe magnus neurons from rat and guinea-pig in vitro. J Physiol. 1990 Aug;427:519–532. doi: 10.1113/jphysiol.1990.sp018185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pocock G., Richards C. D. Cellular mechanisms in general anaesthesia. Br J Anaesth. 1991 Jan;66(1):116–128. doi: 10.1093/bja/66.1.116. [DOI] [PubMed] [Google Scholar]
  29. Proudfit H. K. Pharmacologic evidence for the modulation of nociception by noradrenergic neurons. Prog Brain Res. 1988;77:357–370. doi: 10.1016/s0079-6123(08)62802-2. [DOI] [PubMed] [Google Scholar]
  30. Richards C. D., Strupinski K. An analysis of the action of pentobarbitone on the excitatory postsynaptic potentials and membrane properties of neurones in the guinea-pig olfactory cortex. Br J Pharmacol. 1986 Oct;89(2):321–325. doi: 10.1111/j.1476-5381.1986.tb10263.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sakai K., Sastre J. P., Salvert D., Touret M., Tohyama M., Jouvet M. Tegmentoreticular projections with special reference to the muscular atonia during paradoxical sleep in the cat: an HRP study. Brain Res. 1979 Nov 2;176(2):233–254. doi: 10.1016/0006-8993(79)90981-8. [DOI] [PubMed] [Google Scholar]
  32. Sasa M., Munekiyo K., Osumi Y., Takaori S. Attenuation of morphine analgesia in rats with lesions of the locus coeruleus and dorsal raphe nucleus. Eur J Pharmacol. 1977 Mar 7;42(1):53–62. doi: 10.1016/0014-2999(77)90190-x. [DOI] [PubMed] [Google Scholar]
  33. Sawada S., Yamamoto C. Blocking action of pentobarbital on receptors for excitatory amino acids in the guinea pig hippocampus. Exp Brain Res. 1985;59(2):226–231. doi: 10.1007/BF00230901. [DOI] [PubMed] [Google Scholar]
  34. Schwindt P. C., Crill W. E. Effects of barium on cat spinal motoneurons studied by voltage clamp. J Neurophysiol. 1980 Oct;44(4):827–846. doi: 10.1152/jn.1980.44.4.827. [DOI] [PubMed] [Google Scholar]
  35. Sebel P. S., Bovill J. G., van der Haven A. Cardiovascular effects of alfentanil anaesthesia. Br J Anaesth. 1982 Nov;54(11):1185–1190. doi: 10.1093/bja/54.11.1185. [DOI] [PubMed] [Google Scholar]
  36. Shefner S. A., Chiu T. H. Adenosine inhibits locus coeruleus neurons: an intracellular study in a rat brain slice preparation. Brain Res. 1986 Feb 26;366(1-2):364–368. doi: 10.1016/0006-8993(86)91320-x. [DOI] [PubMed] [Google Scholar]
  37. Weakly J. N. Effect of barbiturates on 'quantal' synaptic transmission in spinal motoneurones. J Physiol. 1969 Sep;204(1):63–77. doi: 10.1113/jphysiol.1969.sp008898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Westlund K. N., Coulter J. D. Descending projections of the locus coeruleus and subcoeruleus/medial parabrachial nuclei in monkey: axonal transport studies and dopamine-beta-hydroxylase immunocytochemistry. Brain Res. 1980 Dec;2(3):235–264. doi: 10.1016/0165-0173(80)90009-0. [DOI] [PubMed] [Google Scholar]
  39. Williams J. T., North R. A. Opiate-receptor interactions on single locus coeruleus neurones. Mol Pharmacol. 1984 Nov;26(3):489–497. [PubMed] [Google Scholar]
  40. Williams J. T., North R. A., Shefner S. A., Nishi S., Egan T. M. Membrane properties of rat locus coeruleus neurones. Neuroscience. 1984 Sep;13(1):137–156. doi: 10.1016/0306-4522(84)90265-3. [DOI] [PubMed] [Google Scholar]
  41. Williams J. T., North R. A., Tokimasa T. Inward rectification of resting and opiate-activated potassium currents in rat locus coeruleus neurons. J Neurosci. 1988 Nov;8(11):4299–4306. doi: 10.1523/JNEUROSCI.08-11-04299.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yuge O., Kitahata L. M., Collins J. G., Matsumoto M., Tabatabai M., Suzukawa M., Tanaka A. Fentanyl and alfentanil suppress brainstem pain transmission. Anesth Analg. 1985 Jun;64(6):597–600. [PubMed] [Google Scholar]
  43. Zorychta E., Capek R. Depression of spinal monosynaptic transmission by diethyl ether: quantal analysis of unitary synaptic potentials. J Pharmacol Exp Ther. 1978 Dec;207(3):825–836. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES