Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Oct;110(2):875–881. doi: 10.1111/j.1476-5381.1993.tb13894.x

Eicosanoid-induced Ca2+ release and sustained contraction in Ca(2+)-free media are mediated by different signal transduction pathways in rat aorta.

R Kurata 1, I Takayanagi 1, T Hisayama 1
PMCID: PMC2175958  PMID: 8242263

Abstract

1. The effects of 12-O-tetradecanoyl 4 beta-phorbol 13-acetate (beta-TPA) on the inositol 1,4,5-trisphosphate (IP3) production, Ca2+ release from the intracellular Ca2+ stores and sensitization of contractile apparatus, induced by prostaglandin F2 alpha (PGF2 alpha) and U46619, a thromboxane A2-mimetic, were studied, using fura-2-loaded and -unloaded rat thoracic aortic strips. 2. Both eicosanoids had characteristic patterns of responses in Ca(2+)-free, 2 mM EGTA-containing solution (Ca(2+)-free solution). They induced transient increases in intracellular Ca2+ concentration ([Ca2+]i) without corresponding transient contraction, but produced delayed, sustained contraction, where [Ca2+]i was returned to the basal level. 3. Treatment with beta-TPA for 60 min reduced the eicosanoids-induced IP3 production, suggesting that the treatment inhibits PIP2 breakdown. 4. The treatment also attenuated [Ca2+]i transient induced by the eicosanoids, but not by caffeine (an IP3-independent releaser of stored Ca2+), in fura-2-loaded preparations incubated in Ca(2+)-free solution. 5. In contrast in the presence of beta-TPA, the sustained contractions evoked by the eicosanoids in Ca(2+)-free solution were potentiated, suggesting that the sites of actions of beta-TPA and the eicosanoids may differ from each other. 6. PGF2 alpha and U46619 utilize different and parallel signal transduction pathways to release Ca2+ by IP3 produced by PIP2 breakdown (beta-TPA-sensitive), and to increase the sensitivity of contractile apparatus, in which protein kinase C may not be involved (beta-TPA-insensitive).

Full text

PDF
875

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki S., Kawahara Y., Kariya K., Sunako M., Fukuzaki H., Takai Y. Stimulation of phospholipase C-mediated hydrolysis of phosphoinositides by endothelin in cultured rabbit aortic smooth muscle cells. Biochem Biophys Res Commun. 1989 Mar 31;159(3):1072–1079. doi: 10.1016/0006-291x(89)92218-3. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  3. Bradley A. B., Morgan K. G. Alterations in cytoplasmic calcium sensitivity during porcine coronary artery contractions as detected by aequorin. J Physiol. 1987 Apr;385:437–448. doi: 10.1113/jphysiol.1987.sp016500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chardonnens D., Lang U., Rossier M. F., Capponi A. M., Vallotton M. B. Inhibitory and stimulatory effects of phorbol ester on vasopressin-induced cellular responses in cultured rat aortic smooth muscle cells. J Biol Chem. 1990 Jun 25;265(18):10451–10457. [PubMed] [Google Scholar]
  5. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  6. Hanasaki K., Nakano K., Kasai H., Arita H., Ohtani K., Doteuchi M. Specific receptors for thromboxane A2 in cultured vascular smooth muscle cells of rat aorta. Biochem Biophys Res Commun. 1988 Feb 15;150(3):1170–1175. doi: 10.1016/0006-291x(88)90752-8. [DOI] [PubMed] [Google Scholar]
  7. Heaslip R. J., Sickels B. D. Evidence that prostaglandins can contract the rat aorta via a novel protein kinase C-dependent mechanism. J Pharmacol Exp Ther. 1989 Jul;250(1):44–51. [PubMed] [Google Scholar]
  8. Himpens B., Somlyo A. P. Free-calcium and force transients during depolarization and pharmacomechanical coupling in guinea-pig smooth muscle. J Physiol. 1988 Jan;395:507–530. doi: 10.1113/jphysiol.1988.sp016932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hisayama T., Takayanagi I., Okamoto Y. Ryanodine reveals multiple contractile and relaxant mechanisms in vascular smooth muscle: simultaneous measurements of mechanical activity and of cytoplasmic free Ca2+ level with fura-2. Br J Pharmacol. 1990 Aug;100(4):677–684. doi: 10.1111/j.1476-5381.1990.tb14075.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huang X. N., Hisayama T., Takayanagi I. Endothelin-1 induced contraction of rat aorta: contributions made by Ca2+ influx and activation of contractile apparatus associated with no change in cytoplasmic Ca2+ level. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jan-Feb;341(1-2):80–87. doi: 10.1007/BF00195062. [DOI] [PubMed] [Google Scholar]
  11. Huang X. N., Takanayagi I., Hisayama T. Endothelin-1 induced contraction of rat aorta in Ca2(+)-free medium independent of phosphatidylinositol 4,5-bisphosphate (PIP2) breakdown. Gen Pharmacol. 1990;21(6):893–898. doi: 10.1016/0306-3623(90)90451-q. [DOI] [PubMed] [Google Scholar]
  12. Itoh H., Higuchi H., Hiraoka N., Ito M., Konishi T., Nakano T., Lederis K. Contraction of rat thoracic aorta strips by endothelin-1 in the absence of extracellular Ca2+. Br J Pharmacol. 1991 Dec;104(4):847–852. doi: 10.1111/j.1476-5381.1991.tb12516.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karaki H. Ca2+ localization and sensitivity in vascular smooth muscle. Trends Pharmacol Sci. 1989 Aug;10(8):320–325. doi: 10.1016/0165-6147(89)90066-7. [DOI] [PubMed] [Google Scholar]
  14. Kaya H., Patton G. M., Hong S. L. Bradykinin-induced activation of phospholipase A2 is independent of the activation of polyphosphoinositide-hydrolyzing phospholipase C. J Biol Chem. 1989 Mar 25;264(9):4972–4977. [PubMed] [Google Scholar]
  15. Kennedy I., Coleman R. A., Humphrey P. P., Levy G. P., Lumley P. Studies on the characterisation of prostanoid receptors: a proposed classification. Prostaglandins. 1982 Nov;24(5):667–689. doi: 10.1016/0090-6980(82)90036-3. [DOI] [PubMed] [Google Scholar]
  16. Langlands J. M., Diamond J. The effect of phenylephrine on inositol 1,4,5-trisphosphate levels in vascular smooth muscle measured using a protein binding assay system. Biochem Biophys Res Commun. 1990 Dec 31;173(3):1258–1265. doi: 10.1016/s0006-291x(05)80922-2. [DOI] [PubMed] [Google Scholar]
  17. Leeb-Lundberg L. M., Cotecchia S., Lomasney J. W., DeBernardis J. F., Lefkowitz R. J., Caron M. G. Phorbol esters promote alpha 1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5651–5655. doi: 10.1073/pnas.82.17.5651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Litten R. Z., Suba E. A., Roth B. L. Effects of a phorbol ester on rat aortic contraction and calcium influx in the presence and absence of BAY k 8644. Eur J Pharmacol. 1987 Dec 1;144(2):185–191. doi: 10.1016/0014-2999(87)90518-8. [DOI] [PubMed] [Google Scholar]
  19. Orellana S. A., Solski P. A., Brown J. H. Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells. J Biol Chem. 1985 May 10;260(9):5236–5239. [PubMed] [Google Scholar]
  20. Ozaki H., Ohyama T., Sato K., Karaki H. Ca2(+)-dependent and independent mechanisms of sustained contraction in vascular smooth muscle of rat aorta. Jpn J Pharmacol. 1990 Mar;52(3):509–512. doi: 10.1254/jjp.52.509. [DOI] [PubMed] [Google Scholar]
  21. Rasmussen H., Takuwa Y., Park S. Protein kinase C in the regulation of smooth muscle contraction. FASEB J. 1987 Sep;1(3):177–185. [PubMed] [Google Scholar]
  22. Reynolds E. E., Mok L. L., Kurokawa S. Phorbol ester dissociates endothelin-stimulated phosphoinositide hydrolysis and arachidonic acid release in vascular smooth muscle cells. Biochem Biophys Res Commun. 1989 Apr 28;160(2):868–873. doi: 10.1016/0006-291x(89)92515-1. [DOI] [PubMed] [Google Scholar]
  23. Reynolds E. E., Mok L. L. Role of thromboxane A2/prostaglandin H2 receptor in the vasoconstrictor response of rat aorta to endothelin. J Pharmacol Exp Ther. 1990 Mar;252(3):915–921. [PubMed] [Google Scholar]
  24. Roth B. L., Nakaki T., Chuang D. M., Costa E. 5-Hydroxytryptamine2 receptors coupled to phospholipase C in rat aorta: modulation of phosphoinositide turnover by phorbol ester. J Pharmacol Exp Ther. 1986 Aug;238(2):480–485. [PubMed] [Google Scholar]
  25. Ruzycky A. L., Morgan K. G. Involvement of the protein kinase C system in calcium-force relationships in ferret aorta. Br J Pharmacol. 1989 Jun;97(2):391–400. doi: 10.1111/j.1476-5381.1989.tb11966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sato K., Ozaki H., Karaki H. Changes in cytosolic calcium level in vascular smooth muscle strip measured simultaneously with contraction using fluorescent calcium indicator fura 2. J Pharmacol Exp Ther. 1988 Jul;246(1):294–300. [PubMed] [Google Scholar]
  27. Slivka S. R., Insel P. A. Phorbol ester and neomycin dissociate bradykinin receptor-mediated arachidonic acid release and polyphosphoinositide hydrolysis in Madin-Darby canine kidney cells. Evidence that bradykinin mediates noninterdependent activation of phospholipases A2 and C. J Biol Chem. 1988 Oct 15;263(29):14640–14647. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES