Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Oct;110(2):896–902. doi: 10.1111/j.1476-5381.1993.tb13897.x

Role of oxygen radicals and arachidonic acid metabolites in the reverse passive Arthus reaction and carrageenin paw oedema in the rat.

N K Boughton-Smith 1, A M Deakin 1, R L Follenfant 1, B J Whittle 1, L G Garland 1
PMCID: PMC2175962  PMID: 8242264

Abstract

1. The role of arachidonic acid metabolites and oxygen radicals in carrageenin-induced rat paw oedema and dermal reverse passive Arthus reaction (RPA) have been investigated. 2. Indomethacin (10 mg kg-1, p.o.) inhibited carrageenin paw oedema when administered 30 min before, but not 2 h after carrageenin. BWB70C (10 mg kg-1, p.o.), a selective inhibitor of 5-lipoxygenase, had no effect whether administered before or after carrageenin. Administration of both indomethacin and BWB70C had no greater anti-inflammatory effect than indomethacin alone. 3. BW755C (20 mg kg-1, p.o.), which inhibits the cyclo-oxygenase and lipoxygenase pathways of arachidonic acid metabolism, or superoxide dismutase-polyethylene glycol conjugate (SOD-PEG, 3000 u, i.v.) inhibited carrageenin paw oedema whether administered either 30 min before, or 2 h after carrageenin. 4. Pretreatment with dexamethasone (0.1 mg kg-1) or colchicine (2 mg kg-1), likewise suppressed carrageenin paw oedema. 5. BW755C (25-100 mg kg-1, p.o.) dose-dependently reduced plasma leakage in the RPA, whereas indomethacin (5 mg kg-1, p.o.) or BWB70C either alone or in combination, did not. 6. SOD-PEG (300-3000 u, i.v.) dose-dependently inhibited plasma leakage in the RPA. In addition, the iron chelator and peroxyl radical scavenger, desferrioxamine (200 mg kg-1, s.c.) also inhibited plasma leakage. 7. Pretreatment with dexamethasone (0.1 mg kg-1) or colchicine (1 mg kg-1) reduced the plasma leakage in RPA, whereas MK-886 (10 mg kg-1) had no effect.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
896

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boughton-Smith N. K., Whittle B. J. Failure of the inhibition of rat gastric mucosal 5-lipoxygenase by novel acetohydroxamic acids to prevent ethanol-induced damage. Br J Pharmacol. 1988 Sep;95(1):155–162. doi: 10.1111/j.1476-5381.1988.tb16559.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradley P. P., Priebat D. A., Christensen R. D., Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 1982 Mar;78(3):206–209. doi: 10.1111/1523-1747.ep12506462. [DOI] [PubMed] [Google Scholar]
  3. Carter G. W., Martin M. K., Krause R. A., Young P. R. The effects of anti-inflammatory and other agents on the rat dermal arthus reaction. Res Commun Chem Pathol Pharmacol. 1982 Feb;35(2):189–207. [PubMed] [Google Scholar]
  4. Chang Y. H., Otterness I. G. Effects of pharmacologic agents on the reversed passive Arthus reaction in the rat. Eur J Pharmacol. 1981 Jan 16;69(2):155–164. doi: 10.1016/0014-2999(81)90410-6. [DOI] [PubMed] [Google Scholar]
  5. Fantone J. C., Ward P. A. Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol. 1982 Jun;107(3):395–418. [PMC free article] [PubMed] [Google Scholar]
  6. Fligiel S. E., Ward P. A., Johnson K. J., Till G. O. Evidence for a role of hydroxyl radical in immune-complex-induced vasculitis. Am J Pathol. 1984 Jun;115(3):375–382. [PMC free article] [PubMed] [Google Scholar]
  7. Flower R. Lipocortin. Biochem Soc Trans. 1989 Apr;17(2):276–278. doi: 10.1042/bst0170276. [DOI] [PubMed] [Google Scholar]
  8. Gillard J., Ford-Hutchinson A. W., Chan C., Charleson S., Denis D., Foster A., Fortin R., Leger S., McFarlane C. S., Morton H. L-663,536 (MK-886) (3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2,2 - dimethylpropanoic acid), a novel, orally active leukotriene biosynthesis inhibitor. Can J Physiol Pharmacol. 1989 May;67(5):456–464. doi: 10.1139/y89-073. [DOI] [PubMed] [Google Scholar]
  9. HUMPHREY J. H. The mechanism of Arthus reactions. II. The role of polymorphonuclear leucocytes and platelets in reversed passive reactions in the guinea-pig. Br J Exp Pathol. 1955 Jun;36(3):283–289. [PMC free article] [PubMed] [Google Scholar]
  10. Hellewell P. G., Williams T. J. A specific antagonist of platelet-activating factor suppresses oedema formation in an Arthus reaction but not oedema induced by leukocyte chemoattractants in rabbit skin. J Immunol. 1986 Jul 1;137(1):302–307. [PubMed] [Google Scholar]
  11. Higgs G. A., Flower R. J., Vane J. R. A new approach to anti-inflammatory drugs. Biochem Pharmacol. 1979 Jun 15;28(12):1959–1961. doi: 10.1016/0006-2952(79)90651-8. [DOI] [PubMed] [Google Scholar]
  12. Higgs G. A., Follenfant R. L., Garland L. G. Selective inhibition of arachidonate 5-lipoxygenase by novel acetohydroxamic acids: effects on acute inflammatory responses. Br J Pharmacol. 1988 Jun;94(2):547–551. doi: 10.1111/j.1476-5381.1988.tb11559.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Higgs G. A., Moncada S., Vane J. R. Eicosanoids in inflammation. Ann Clin Res. 1984;16(5-6):287–299. [PubMed] [Google Scholar]
  14. Holsapple M. P., Yim G. K. Therapeutic reduction of ongoing carrageenin-induced inflammation by lipoxygenase, but not cyclooxygenase inhibitors. Inflammation. 1984 Sep;8(3):223–230. doi: 10.1007/BF00916412. [DOI] [PubMed] [Google Scholar]
  15. Hughes S. R., Williams T. J., Brain S. D. Evidence that endogenous nitric oxide modulates oedema formation induced by substance P. Eur J Pharmacol. 1990 Dec 4;191(3):481–484. doi: 10.1016/0014-2999(90)94184-y. [DOI] [PubMed] [Google Scholar]
  16. Ialenti A., Ianaro A., Moncada S., Di Rosa M. Modulation of acute inflammation by endogenous nitric oxide. Eur J Pharmacol. 1992 Feb 11;211(2):177–182. doi: 10.1016/0014-2999(92)90526-a. [DOI] [PubMed] [Google Scholar]
  17. Knowles R. G., Salter M., Brooks S. L., Moncada S. Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1042–1048. doi: 10.1016/0006-291x(90)91551-3. [DOI] [PubMed] [Google Scholar]
  18. Kopp D. E., Esser B., Tashoff T., Goldman D. W., Goetzl E. J., Lemanske R. F., Jr In vivo and in vitro assessment of the role of leukotriene B4 as a mediator of rat cutaneous late-phase reactions. J Allergy Clin Immunol. 1986 Feb;77(2):302–308. doi: 10.1016/s0091-6749(86)80108-7. [DOI] [PubMed] [Google Scholar]
  19. Kreisle R. A., Parker C. W., Griffin G. L., Senior R. M., Stenson W. F. Studies of leukotriene B4-specific binding and function in rat polymorphonuclear leukocytes: absence of a chemotactic response. J Immunol. 1985 May;134(5):3356–3363. [PubMed] [Google Scholar]
  20. Lewis R. A., Austen K. F., Soberman R. J. Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med. 1990 Sep 6;323(10):645–655. doi: 10.1056/NEJM199009063231006. [DOI] [PubMed] [Google Scholar]
  21. Marnett L. J., Siedlik P. H., Fung L. W. Oxidation of phenidone and BW755C by prostaglandin endoperoxide synthetase. J Biol Chem. 1982 Jun 25;257(12):6957–6964. [PubMed] [Google Scholar]
  22. McCall T. B., Boughton-Smith N. K., Palmer R. M., Whittle B. J., Moncada S. Synthesis of nitric oxide from L-arginine by neutrophils. Release and interaction with superoxide anion. Biochem J. 1989 Jul 1;261(1):293–296. doi: 10.1042/bj2610293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McCormick J. R., Harkin M. M., Johnson K. J., Ward P. A. Suppression by superoxide dismutase of immune-complex--induced pulmonary alveolitis and dermal inflammation. Am J Pathol. 1981 Jan;102(1):55–61. [PMC free article] [PubMed] [Google Scholar]
  24. Namiki M., Igarashi Y., Sakamoto K., Nakamura T., Koga Y. Pharmacological profiles of a potential LTB4-antagonist, SM-9064. Biochem Biophys Res Commun. 1986 Jul 31;138(2):540–546. doi: 10.1016/s0006-291x(86)80530-7. [DOI] [PubMed] [Google Scholar]
  25. Oyanagui Y. Participation of superoxide anions at the prostaglandin phase of carrageenan foot-oedema. Biochem Pharmacol. 1976 Jul 1;25(13):1465–1472. [PubMed] [Google Scholar]
  26. Pekoe G., Van Dyke K., Peden D., Mengoli H., English D. Antioxidation theory of non-steroidal anti-inflammatory drugs based upon the inhibition of luminol-enhanced chemiluminescence from the myeloperoxidase reaction. Agents Actions. 1982 Jul;12(3):371–376. doi: 10.1007/BF01965406. [DOI] [PubMed] [Google Scholar]
  27. Petrone W. F., English D. K., Wong K., McCord J. M. Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1159–1163. doi: 10.1073/pnas.77.2.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pflum L. R., Graeme M. L. The Arthus reaction in rats, a possible test for anti-inflammatory and antiheumatic drugs. Agents Actions. 1979 Jun;9(2):184–189. doi: 10.1007/BF02024732. [DOI] [PubMed] [Google Scholar]
  29. Randall R. W., Eakins K. E., Higgs G. A., Salmon J. A., Tateson J. E. Inhibition of arachidonic acid cyclo-oxygenase and lipoxygenase activities of leukocytes by indomethacin and compound BW755C. Agents Actions. 1980 Dec;10(6):553–555. doi: 10.1007/BF02024164. [DOI] [PubMed] [Google Scholar]
  30. Salmon J. A., Jackson W. P., Garland L. G. Inhibition of 5-lipoxygenase: development of hydroxamic acids and hydroxyureas as potential therapeutic agents. Adv Prostaglandin Thromboxane Leukot Res. 1991;21A:109–112. [PubMed] [Google Scholar]
  31. Schraufstatter I. U., Hyslop P. A., Jackson J., Cochrane C. C. Oxidant injury of cells. Int J Tissue React. 1987;9(4):317–324. [PubMed] [Google Scholar]
  32. Ward P. A. Mechanisms of endothelial cell injury. J Lab Clin Med. 1991 Nov;118(5):421–426. [PubMed] [Google Scholar]
  33. Warren J. S., Ward P. A., Johnson K. J., Ginsburg I. Modulation of acute immune complex-mediated tissue injury by the presence of polyionic substances. Am J Pathol. 1987 Jul;128(1):67–77. [PMC free article] [PubMed] [Google Scholar]
  34. Warren J. S., Yabroff K. R., Mandel D. M., Johnson K. J., Ward P. A. Role of O2- in neutrophil recruitment into sites of dermal and pulmonary vasculitis. Free Radic Biol Med. 1990;8(2):163–172. doi: 10.1016/0891-5849(90)90089-2. [DOI] [PubMed] [Google Scholar]
  35. Wedmore C. V., Williams T. J. Control of vascular permeability by polymorphonuclear leukocytes in inflammation. Nature. 1981 Feb 19;289(5799):646–650. doi: 10.1038/289646a0. [DOI] [PubMed] [Google Scholar]
  36. Williams T. J., Peck M. J. Role of prostaglandin-mediated vasodilatation in inflammation. Nature. 1977 Dec 8;270(5637):530–532. doi: 10.1038/270530a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES