Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Sep;110(1):219–224. doi: 10.1111/j.1476-5381.1993.tb13795.x

Characterization of the novel nitric oxide synthase inhibitor 7-nitro indazole and related indazoles: antinociceptive and cardiovascular effects.

P K Moore 1, P Wallace 1, Z Gaffen 1, S L Hart 1, R C Babbedge 1
PMCID: PMC2175981  PMID: 7693278

Abstract

1. 7-Nitro indazole (7-NI, 10-50 mg kg-1), 6-nitro indazole and indazole (25-100 mg kg-1) administered i.p. in the mouse produce dose-related antinociception in the late phase of the formalin-induced hindpaw licking and acetic acid-induced abdominal constriction assays. The ED50 values (mg kg-1) were as follows: 7-NI (27.5 and 22.5), 6-nitro indazole (62.5 and 44.0) and indazole (41.0 and 48.5) in the two assays respectively. 3-Indazolinone, 6 amino indazole and 6-sulphanilimido indazole (all 50 mg kg-1) were without effect. With the exception of 5-nitro indazole (50 mg kg-1) which produced sedation, none of the other indazole derivates examined caused overt behavioural changes. 2. The antinociceptive effect of 7-NI (25 mg kg-1, i.p.) in the late phase of the formalin-induced hindpaw licking assay was partially (46.7 +/- 16.2%, n = 18) reversed by pretreatment with L- but not D-arginine (both 50 mg kg-1, i.p.). 3. The time course of 7-NI induced antinociception in the mouse was correlated with inhibition of brain (cerebellum) nitric oxide synthase (NOS) activity. Maximum antinociceptive activity and NOS inhibition was detected 18-30 min following i.p. administration. In contrast, no antinociceptive effect or inhibition of cerebellar NOS was detected 75 min post-injection. 4. 7-NI, 6-nitro indazole, indazole, 3-indazolinone and 6-amino indazole (all 50 mg kg-1) failed to influence mean arterial pressure (MAP) over the 45 min after i.p. administration in the anaesthetized mouse.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
219

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisaka K., Gross S. S., Griffith O. W., Levi R. NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? Biochem Biophys Res Commun. 1989 Apr 28;160(2):881–886. doi: 10.1016/0006-291x(89)92517-5. [DOI] [PubMed] [Google Scholar]
  2. Buisson A., Plotkine M., Boulu R. G. The neuroprotective effect of a nitric oxide inhibitor in a rat model of focal cerebral ischaemia. Br J Pharmacol. 1992 Aug;106(4):766–767. doi: 10.1111/j.1476-5381.1992.tb14410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bullitt E. Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol. 1990 Jun 22;296(4):517–530. doi: 10.1002/cne.902960402. [DOI] [PubMed] [Google Scholar]
  4. Dawson D. A., Kusumoto K., Graham D. I., McCulloch J., Macrae I. M. Inhibition of nitric oxide synthesis does not reduce infarct volume in a rat model of focal cerebral ischaemia. Neurosci Lett. 1992 Aug 17;142(2):151–154. doi: 10.1016/0304-3940(92)90361-a. [DOI] [PubMed] [Google Scholar]
  5. Dawson V. L., Dawson T. M., London E. D., Bredt D. S., Snyder S. H. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6368–6371. doi: 10.1073/pnas.88.14.6368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dirnagl U., Lindauer U., Villringer A. Role of nitric oxide in the coupling of cerebral blood flow to neuronal activation in rats. Neurosci Lett. 1993 Jan 4;149(1):43–46. doi: 10.1016/0304-3940(93)90343-j. [DOI] [PubMed] [Google Scholar]
  7. Dun N. J., Dun S. L., Forstermann U., Tseng L. F. Nitric oxide synthase immunoreactivity in rat spinal cord. Neurosci Lett. 1992 Dec 7;147(2):217–220. doi: 10.1016/0304-3940(92)90599-3. [DOI] [PubMed] [Google Scholar]
  8. Dwyer M. A., Bredt D. S., Snyder S. H. Nitric oxide synthase: irreversible inhibition by L-NG-nitroarginine in brain in vitro and in vivo. Biochem Biophys Res Commun. 1991 May 15;176(3):1136–1141. doi: 10.1016/0006-291x(91)90403-t. [DOI] [PubMed] [Google Scholar]
  9. Faraci F. M. Role of nitric oxide in regulation of basilar artery tone in vivo. Am J Physiol. 1990 Oct;259(4 Pt 2):H1216–H1221. doi: 10.1152/ajpheart.1990.259.4.H1216. [DOI] [PubMed] [Google Scholar]
  10. Foster S. J., Bruneau P., Walker E. R., McMillan R. M. 2-substituted indazolinones: orally active and selective 5-lipoxygenase inhibitors with anti-inflammatory activity. Br J Pharmacol. 1990 Jan;99(1):113–118. doi: 10.1111/j.1476-5381.1990.tb14663.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goadsby P. J., Kaube H., Hoskin K. L. Nitric oxide synthesis couples cerebral blood flow and metabolism. Brain Res. 1992 Nov 6;595(1):167–170. doi: 10.1016/0006-8993(92)91470-y. [DOI] [PubMed] [Google Scholar]
  12. Haberny K. A., Pou S., Eccles C. U. Potentiation of quinolinate-induced hippocampal lesions by inhibition of NO synthesis. Neurosci Lett. 1992 Nov 9;146(2):187–190. doi: 10.1016/0304-3940(92)90074-h. [DOI] [PubMed] [Google Scholar]
  13. Haley J. E., Dickenson A. H., Schachter M. Electrophysiological evidence for a role of nitric oxide in prolonged chemical nociception in the rat. Neuropharmacology. 1992 Mar;31(3):251–258. doi: 10.1016/0028-3908(92)90175-o. [DOI] [PubMed] [Google Scholar]
  14. Hope B. T., Michael G. J., Knigge K. M., Vincent S. R. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2811–2814. doi: 10.1073/pnas.88.7.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hunskaar S., Hole K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain. 1987 Jul;30(1):103–114. doi: 10.1016/0304-3959(87)90088-1. [DOI] [PubMed] [Google Scholar]
  16. Kitto K. F., Haley J. E., Wilcox G. L. Involvement of nitric oxide in spinally mediated hyperalgesia in the mouse. Neurosci Lett. 1992 Dec 14;148(1-2):1–5. doi: 10.1016/0304-3940(92)90790-e. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lee J. H., Wilcox G. L., Beitz A. J. Nitric oxide mediates Fos expression in the spinal cord induced by mechanical noxious stimulation. Neuroreport. 1992 Oct;3(10):841–844. doi: 10.1097/00001756-199210000-00005. [DOI] [PubMed] [Google Scholar]
  19. Lisciani R., Barcellona P. S., Silvestrini B. Researches on the topical activity of benzydamine. Eur J Pharmacol. 1968 May;3(2):157–162. doi: 10.1016/0014-2999(68)90069-1. [DOI] [PubMed] [Google Scholar]
  20. Meller S. T., Dykstra C., Gebhart G. F. Production of endogenous nitric oxide and activation of soluble guanylate cyclase are required for N-methyl-D-aspartate-produced facilitation of the nociceptive tail-flick reflex. Eur J Pharmacol. 1992 Apr 7;214(1):93–96. doi: 10.1016/0014-2999(92)90102-a. [DOI] [PubMed] [Google Scholar]
  21. Meller S. T., Gebhart G. F. Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain. 1993 Feb;52(2):127–136. doi: 10.1016/0304-3959(93)90124-8. [DOI] [PubMed] [Google Scholar]
  22. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  23. Moore P. K., Babbedge R. C., Wallace P., Gaffen Z. A., Hart S. L. 7-Nitro indazole, an inhibitor of nitric oxide synthase, exhibits anti-nociceptive activity in the mouse without increasing blood pressure. Br J Pharmacol. 1993 Feb;108(2):296–297. doi: 10.1111/j.1476-5381.1993.tb12798.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moore P. K., Oluyomi A. O., Babbedge R. C., Wallace P., Hart S. L. L-NG-nitro arginine methyl ester exhibits antinociceptive activity in the mouse. Br J Pharmacol. 1991 Jan;102(1):198–202. doi: 10.1111/j.1476-5381.1991.tb12153.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moore P. K., al-Swayeh O. A., Chong N. W., Evans R. A., Gibson A. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol. 1990 Feb;99(2):408–412. doi: 10.1111/j.1476-5381.1990.tb14717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morikawa E., Huang Z., Moskowitz M. A. L-arginine decreases infarct size caused by middle cerebral arterial occlusion in SHR. Am J Physiol. 1992 Nov;263(5 Pt 2):H1632–H1635. doi: 10.1152/ajpheart.1992.263.5.H1632. [DOI] [PubMed] [Google Scholar]
  27. Mustafa A. A. Mechanisms of L-NG-nitro arginine methyl ester-induced antinociception in mice: a role for serotonergic and adrenergic neurons. Gen Pharmacol. 1992 Nov;23(6):1177–1182. doi: 10.1016/0306-3623(92)90308-7. [DOI] [PubMed] [Google Scholar]
  28. Nowicki J. P., Duval D., Poignet H., Scatton B. Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur J Pharmacol. 1991 Nov 12;204(3):339–340. doi: 10.1016/0014-2999(91)90862-k. [DOI] [PubMed] [Google Scholar]
  29. Petros A., Bennett D., Vallance P. Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet. 1991 Dec 21;338(8782-8783):1557–1558. doi: 10.1016/0140-6736(91)92376-d. [DOI] [PubMed] [Google Scholar]
  30. Pinelli A., Trivulzio S., Malvezzi L., Rossoni G., Berti F. Antisecretory activity of 6-aminoindazole in rats. Arzneimittelforschung. 1989 Mar;39(3):361–365. [PubMed] [Google Scholar]
  31. Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Robertson D. W., Bloomquist W., Cohen M. L., Reid L. R., Schenck K., Wong D. T. Synthesis and biochemical evaluation of tritium-labeled 1-methyl-N-(8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-1H-indazole-3-carboxa mide, a useful radioligand for 5HT3 receptors. J Med Chem. 1990 Dec;33(12):3176–3181. doi: 10.1021/jm00174a013. [DOI] [PubMed] [Google Scholar]
  33. Silvestrini B., Garau A., Pozzatti C., Cioli V., Catanese B. Additional pharmacological studies on benzydamine. Arch Int Pharmacodyn Ther. 1966 Sep;163(1):61–69. [PubMed] [Google Scholar]
  34. Solodkin A., Traub R. J., Gebhart G. F. Unilateral hindpaw inflammation produces a bilateral increase in NADPH-diaphorase histochemical staining in the rat lumbar spinal cord. Neuroscience. 1992 Dec;51(3):495–499. doi: 10.1016/0306-4522(92)90290-i. [DOI] [PubMed] [Google Scholar]
  35. Trifiletti R. R. Neuroprotective effects of NG-nitro-L-arginine in focal stroke in the 7-day old rat. Eur J Pharmacol. 1992 Jul 21;218(1):197–198. doi: 10.1016/0014-2999(92)90168-4. [DOI] [PubMed] [Google Scholar]
  36. Valtschanoff J. G., Weinberg R. J., Rustioni A., Schmidt H. H. Nitric oxide synthase and GABA colocalize in lamina II of rat spinal cord. Neurosci Lett. 1992 Dec 14;148(1-2):6–10. doi: 10.1016/0304-3940(92)90791-5. [DOI] [PubMed] [Google Scholar]
  37. Weissman B. A., Kadar T., Brandeis R., Shapira S. NG-nitro-L-arginine enhances neuronal death following transient forebrain ischemia in gerbils. Neurosci Lett. 1992 Nov 9;146(2):139–142. doi: 10.1016/0304-3940(92)90062-c. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES