Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Sep;110(1):428–434. doi: 10.1111/j.1476-5381.1993.tb13828.x

Cerebral blood flow and cerebrovascular reactivity after inhibition of nitric oxide synthesis in conscious goats.

N Fernández 1, J L García 1, A L García-Villalón 1, L Monge 1, B Gómez 1, G Diéguez 1
PMCID: PMC2175992  PMID: 8220904

Abstract

1. The role of nitric oxide in the cerebral circulation under basal conditions and after vasodilator stimulation was studied in instrumented, conscious goats, by examining the action of inhibiting endogenous nitric oxide production with NG-nitro-L-arginine methyl ester (L-NAME). 2. In 6 unanaesthetized goats, blood flow to one brain hemisphere (electromagnetically measured), systemic arterial blood pressure and heart rate were continuously recorded. L-NAME (35 mg kg-1 by i.v. bolus) decreased resting cerebral blood flow by 43 +/- 3%, increased mean arterial pressure by 21 +/- 2%, and decreased heart rate by 41 +/- 2%; cerebrovascular resistance increased by 114 +/- 13% (P < 0.01); the immediate addition of i.v. infusion of L-NAME (0.15-0.20 mg kg-1 during 60-80 min) did not significantly modify these effects. Cerebral blood flow recovered at 72 h, arterial pressure and cerebrovascular resistance at 48 h, and heart rate at 6 days after L-NAME treatment. 3. A second treatment with L-NAME scheduled as above reproduced the immediate haemodynamic effects of the first treatment, which (except bradycardia) reversed with L-arginine (200-300 mg kg-1 by i.v. bolus). 4. Acetylcholine (0.01-0.3 micrograms), sodium nitroprusside (3-100 micrograms) and diazoxide (0.3-9 mg), injected into the cerebral circulation of 5 conscious goats, produced dose-dependent increases in cerebral blood flow, and decreases in cerebrovascular resistance; sodium nitroprusside (30 and 100 micrograms) also caused hypotension and tachycardia.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
428

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisaka K., Gross S. S., Griffith O. W., Levi R. NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? Biochem Biophys Res Commun. 1989 Apr 28;160(2):881–886. doi: 10.1016/0006-291x(89)92517-5. [DOI] [PubMed] [Google Scholar]
  2. Bredt D. S., Hwang P. M., Snyder S. H. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature. 1990 Oct 25;347(6295):768–770. doi: 10.1038/347768a0. [DOI] [PubMed] [Google Scholar]
  3. Du Z. Y., Dusting G. J., Woodman O. L. Baroreceptor reflexes and vascular reactivity during inhibition of nitric oxide synthesis in conscious rabbits. Eur J Pharmacol. 1992 Apr 7;214(1):21–26. doi: 10.1016/0014-2999(92)90090-q. [DOI] [PubMed] [Google Scholar]
  4. Faraci F. M., Heistad D. D. Does basal production of nitric oxide contribute to regulation of brain-fluid balance? Am J Physiol. 1992 Feb;262(2 Pt 2):H340–H344. doi: 10.1152/ajpheart.1992.262.2.H340. [DOI] [PubMed] [Google Scholar]
  5. Faraci F. M. Role of endothelium-derived relaxing factor in cerebral circulation: large arteries vs. microcirculation. Am J Physiol. 1991 Oct;261(4 Pt 2):H1038–H1042. doi: 10.1152/ajpheart.1991.261.4.H1038. [DOI] [PubMed] [Google Scholar]
  6. Faraci F. M. Role of nitric oxide in regulation of basilar artery tone in vivo. Am J Physiol. 1990 Oct;259(4 Pt 2):H1216–H1221. doi: 10.1152/ajpheart.1990.259.4.H1216. [DOI] [PubMed] [Google Scholar]
  7. Fujiwara S., Kassell N. F., Sasaki T., Nakagomi T., Lehman R. M. Selective hemoglobin inhibition of endothelium-dependent vasodilation of rabbit basilar artery. J Neurosurg. 1986 Mar;64(3):445–452. doi: 10.3171/jns.1986.64.3.0445. [DOI] [PubMed] [Google Scholar]
  8. García J. L., Fernández N., García-Villalón A. L., Monge L., Gómez B., Diéguez G. Effects of nitric oxide synthesis inhibition on the goat coronary circulation under basal conditions and after vasodilator stimulation. Br J Pharmacol. 1992 Jul;106(3):563–567. doi: 10.1111/j.1476-5381.1992.tb14375.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. García J. L., Gómez B., Monge L., García-Villalón A. L., Diéguez G. Endothelin action on cerebral circulation in unanesthetized goats. Am J Physiol. 1991 Sep;261(3 Pt 2):R581–R587. doi: 10.1152/ajpregu.1991.261.3.R581. [DOI] [PubMed] [Google Scholar]
  10. Gardiner S. M., Compton A. M., Bennett T., Palmer R. M., Moncada S. Control of regional blood flow by endothelium-derived nitric oxide. Hypertension. 1990 May;15(5):486–492. doi: 10.1161/01.hyp.15.5.486. [DOI] [PubMed] [Google Scholar]
  11. Gardiner S. M., Compton A. M., Kemp P. A., Bennett T. Effects of NG-nitro-L-arginine methyl ester or indomethacin on differential regional and cardiac haemodynamic actions of arginine vasopressin and lysine vasopressin in conscious rats. Br J Pharmacol. 1991 Jan;102(1):65–72. doi: 10.1111/j.1476-5381.1991.tb12133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gardiner S. M., Kemp P. A., Bennett T. Effects of NG-nitro-L-arginine methyl ester on vasodilator responses to acetylcholine, 5'-N-ethylcarboxamidoadenosine or salbutamol in conscious rats. Br J Pharmacol. 1991 Jul;103(3):1725–1732. doi: 10.1111/j.1476-5381.1991.tb09854.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Iadecola C. Does nitric oxide mediate the increases in cerebral blood flow elicited by hypercapnia? Proc Natl Acad Sci U S A. 1992 May 1;89(9):3913–3916. doi: 10.1073/pnas.89.9.3913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ignarro L. J. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol. 1990;30:535–560. doi: 10.1146/annurev.pa.30.040190.002535. [DOI] [PubMed] [Google Scholar]
  15. Kontos H. A., Wei E. P., Marshall J. J. In vivo bioassay of endothelium-derived relaxing factor. Am J Physiol. 1988 Nov;255(5 Pt 2):H1259–H1262. doi: 10.1152/ajpheart.1988.255.5.H1259. [DOI] [PubMed] [Google Scholar]
  16. Kovách A. G., Szabó C., Benyó Z., Csáki C., Greenberg J. H., Reivich M. Effects of NG-nitro-L-arginine and L-arginine on regional cerebral blood flow in the cat. J Physiol. 1992 Apr;449:183–196. doi: 10.1113/jphysiol.1992.sp019081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koźniewska E., Oseka M., Styś T. Effects of endothelium-derived nitric oxide on cerebral circulation during normoxia and hypoxia in the rat. J Cereb Blood Flow Metab. 1992 Mar;12(2):311–317. doi: 10.1038/jcbfm.1992.43. [DOI] [PubMed] [Google Scholar]
  18. Lluch S., Gómez B., Alborch E., Urquilla P. R. Adrenergic mechanisms in cerebral circulation of the goat. Am J Physiol. 1975 Apr;228(4):985–989. doi: 10.1152/ajplegacy.1975.228.4.985. [DOI] [PubMed] [Google Scholar]
  19. Lüscher T. F., Richard V., Yang Z. H. Interaction between endothelium-derived nitric oxide and SIN-1 in human and porcine blood vessels. J Cardiovasc Pharmacol. 1989;14 (Suppl 11):S76–S80. [PubMed] [Google Scholar]
  20. Martin W., Furchgott R. F., Villani G. M., Jothianandan D. Depression of contractile responses in rat aorta by spontaneously released endothelium-derived relaxing factor. J Pharmacol Exp Ther. 1986 May;237(2):529–538. [PubMed] [Google Scholar]
  21. Miletich D. J., Ivankovic A. D., Albrecht R. F., Toyooka E. T. Cerebral hemodynamics following internal maxillary artery ligation in the goat. J Appl Physiol. 1975 May;38(5):942–945. doi: 10.1152/jappl.1975.38.5.942. [DOI] [PubMed] [Google Scholar]
  22. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  23. Moncada S., Rees D. D., Schulz R., Palmer R. M. Development and mechanism of a specific supersensitivity to nitrovasodilators after inhibition of vascular nitric oxide synthesis in vivo. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2166–2170. doi: 10.1073/pnas.88.6.2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moore P. K., Oluyomi A. O., Babbedge R. C., Wallace P., Hart S. L. L-NG-nitro arginine methyl ester exhibits antinociceptive activity in the mouse. Br J Pharmacol. 1991 Jan;102(1):198–202. doi: 10.1111/j.1476-5381.1991.tb12153.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moore P. K., al-Swayeh O. A., Chong N. W., Evans R. A., Gibson A. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol. 1990 Feb;99(2):408–412. doi: 10.1111/j.1476-5381.1990.tb14717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pelligrino D. A., Miletich D. J., Albrecht R. F. Diminished muscarinic receptor-mediated cerebral blood flow response in streptozotocin-treated rats. Am J Physiol. 1992 Apr;262(4 Pt 1):E447–E454. doi: 10.1152/ajpendo.1992.262.4.E447. [DOI] [PubMed] [Google Scholar]
  27. Rees D. D., Palmer R. M., Hodson H. F., Moncada S. A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol. 1989 Feb;96(2):418–424. doi: 10.1111/j.1476-5381.1989.tb11833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rees D. D., Palmer R. M., Schulz R., Hodson H. F., Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. doi: 10.1111/j.1476-5381.1990.tb14151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Reimann C., Lluch S., Glick G. Development and evaluation of an experimental model for the study of the cerebral circulation in the unanesthetized goat. Stroke. 1972 May-Jun;3(3):322–328. doi: 10.1161/01.str.3.3.322. [DOI] [PubMed] [Google Scholar]
  31. Rosenblum W. I. Endothelial dependent relaxation demonstrated in vivo in cerebral arterioles. Stroke. 1986 May-Jun;17(3):494–497. doi: 10.1161/01.str.17.3.494. [DOI] [PubMed] [Google Scholar]
  32. Rosenblum W. I., Nishimura H., Nelson G. H. Endothelium-dependent L-Arg- and L-NMMA-sensitive mechanisms regulate tone of brain microvessels. Am J Physiol. 1990 Nov;259(5 Pt 2):H1396–H1401. doi: 10.1152/ajpheart.1990.259.5.H1396. [DOI] [PubMed] [Google Scholar]
  33. Shirasaki Y., Su C. Endothelium removal augments vasodilation by sodium nitroprusside and sodium nitrite. Eur J Pharmacol. 1985 Aug 7;114(1):93–96. doi: 10.1016/0014-2999(85)90527-8. [DOI] [PubMed] [Google Scholar]
  34. Standen N. B., Quayle J. M., Davies N. W., Brayden J. E., Huang Y., Nelson M. T. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science. 1989 Jul 14;245(4914):177–180. doi: 10.1126/science.2501869. [DOI] [PubMed] [Google Scholar]
  35. Wang Y. X., Pang C. C. Possible dependence of pressor and heart rate effects of NG-nitro-L-arginine on autonomic nerve activity. Br J Pharmacol. 1991 Aug;103(4):2004–2008. doi: 10.1111/j.1476-5381.1991.tb12367.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Widdop R. E., Gardiner S. M., Kemp P. A., Bennett T. The influence of atropine and atenolol on the cardiac haemodynamic effects of NG-nitro-L-arginine methyl ester in conscious, Long Evans rats. Br J Pharmacol. 1992 Mar;105(3):653–656. doi: 10.1111/j.1476-5381.1992.tb09034.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES