Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Sep;110(1):87–94. doi: 10.1111/j.1476-5381.1993.tb13775.x

Membrane current responses to externally-applied ATP in the longitudinal muscle of the chicken rectum.

T Matsuoka 1, S Komori 1, H Ohashi 1
PMCID: PMC2176010  PMID: 8220917

Abstract

1. Membrane current responses to ATP in enzymically-dispersed single smooth muscle cells from the chicken rectum were investigated by the whole-cell voltage clamp technique. 2. In cells dialysed with a KCl-rich solution under voltage clamp at a holding potential of -40 mV, ATP (10 microM) produced an inward current followed by an outward current. When the holding potential was changed to 0 mV and -80 mV, the biphasic current response to ATP was converted to an outward current alone and an inward current alone, respectively. 3. External application of tetraethylammonium (TEA, 5 mM), intracellular dialysis with a CsCl-rich solution, or inclusion of EGTA (10 mM) in the pipette abolished the outward current response to ATP. 4. Neither depletion of Ca2+ store with caffeine (10 mM) nor block of voltage-gated Ca2+ channels with nifedipine (10 microM) affected the biphasic current response to ATP. After removal of the extracellular Ca2+ the outward current response to ATP was abolished. 5. alpha,beta-methylene ATP (100 microM) elicited a current similar to the ATP-induced current. In the presence of alpha,beta-methylene ATP (100 microM), application of ATP (100 microM) was without effect. 6. In CsCl-filled cells, ATP analogues elicited an inward current and the order of potency was ATP not equal to alpha, beta-methylene ATP > ADP >> AMP. 7. Inclusion of GTP gamma S (0.2 mM) or GDP beta S (2 mM) in the pipette did not affect the ATP-induced inward current in CsCl-filled cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
87

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benham C. D. ATP-activated channels gate calcium entry in single smooth muscle cells dissociated from rabbit ear artery. J Physiol. 1989 Dec;419:689–701. doi: 10.1113/jphysiol.1989.sp017893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benham C. D., Bolton T. B., Byrne N. G., Large W. A. Action of externally applied adenosine triphosphate on single smooth muscle cells dispersed from rabbit ear artery. J Physiol. 1987 Jun;387:473–488. doi: 10.1113/jphysiol.1987.sp016585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benham C. D., Bolton T. B. Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit. J Physiol. 1986 Dec;381:385–406. doi: 10.1113/jphysiol.1986.sp016333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benham C. D., Tsien R. W. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature. 1987 Jul 16;328(6127):275–278. doi: 10.1038/328275a0. [DOI] [PubMed] [Google Scholar]
  5. Bolton T. B., Lim S. P. Properties of calcium stores and transient outward currents in single smooth muscle cells of rabbit intestine. J Physiol. 1989 Feb;409:385–401. doi: 10.1113/jphysiol.1989.sp017504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyer J. L., Downes C. P., Harden T. K. Kinetics of activation of phospholipase C by P2Y purinergic receptor agonists and guanine nucleotides. J Biol Chem. 1989 Jan 15;264(2):884–890. [PubMed] [Google Scholar]
  7. Brading A. F., Mostwin J. L. Electrical and mechanical responses of guinea-pig bladder muscle to nerve stimulation. Br J Pharmacol. 1989 Dec;98(4):1083–1090. doi: 10.1111/j.1476-5381.1989.tb12651.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Droogmans G., Callewaert G., Declerck I., Casteels R. ATP-induced Ca2+ release and Cl- current in cultured smooth muscle cells from pig aorta. J Physiol. 1991;440:623–634. doi: 10.1113/jphysiol.1991.sp018728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Friel D. D. An ATP-sensitive conductance in single smooth muscle cells from the rat vas deferens. J Physiol. 1988 Jul;401:361–380. doi: 10.1113/jphysiol.1988.sp017167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fujii K. Evidence for adenosine triphosphate as an excitatory transmitter in guinea-pig, rabbit and pig urinary bladder. J Physiol. 1988 Oct;404:39–52. doi: 10.1113/jphysiol.1988.sp017277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  13. Hoyle C. H., Burnstock G. Atropine-resistant excitatory junction potentials in rabbit bladder are blocked by alpha,beta-methylene ATP. Eur J Pharmacol. 1985 Aug 15;114(2):239–240. doi: 10.1016/0014-2999(85)90635-1. [DOI] [PubMed] [Google Scholar]
  14. Inoue R., Brading A. F. The properties of the ATP-induced depolarization and current in single cells isolated from the guinea-pig urinary bladder. Br J Pharmacol. 1990 Jul;100(3):619–625. doi: 10.1111/j.1476-5381.1990.tb15856.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Inoue R., Isenberg G. Acetylcholine activates nonselective cation channels in guinea pig ileum through a G protein. Am J Physiol. 1990 Jun;258(6 Pt 1):C1173–C1178. doi: 10.1152/ajpcell.1990.258.6.C1173. [DOI] [PubMed] [Google Scholar]
  16. Komori S., Bolton T. B. Role of G-proteins in muscarinic receptor inward and outward currents in rabbit jejunal smooth muscle. J Physiol. 1990 Aug;427:395–419. doi: 10.1113/jphysiol.1990.sp018178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Komori S., Fukutome T., Ohashi H. Isolation of a peptide material showing strong rectal muscle-contracting activity from chicken rectum and its identification as chicken neurotensin. Jpn J Pharmacol. 1986 Apr;40(4):577–589. doi: 10.1254/jjp.40.577. [DOI] [PubMed] [Google Scholar]
  18. Komori S., Kawai M., Takewaki T., Ohashi H. GTP-binding protein involvement in membrane currents evoked by carbachol and histamine in guinea-pig ileal muscle. J Physiol. 1992 May;450:105–126. doi: 10.1113/jphysiol.1992.sp019118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Komori S., Kwon S. C., Ohashi H. Effects of prolonged exposure to alpha,beta-methylene ATP on non-adrenergic, non-cholinergic excitatory transmission in the rectum of the chicken. Br J Pharmacol. 1988 May;94(1):9–18. doi: 10.1111/j.1476-5381.1988.tb11494.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Komori S., Matsuoka T., Kwon S. C., Takewaki T., Ohashi H. Membrane potential and current responses to neurotensin in the longitudinal muscle of the rectum of the fowl. Br J Pharmacol. 1992 Nov;107(3):790–796. doi: 10.1111/j.1476-5381.1992.tb14525.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Komori S., Ohashi H. Membrane potential responses to ATP applied by pressure ejection in the longitudinal muscle of chicken rectum. Br J Pharmacol. 1988 Dec;95(4):1157–1164. doi: 10.1111/j.1476-5381.1988.tb11751.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Komori S., Ohashi H. Some characteristics of transmission from non-adrenergic, non-cholinergic excitatory nerves to the smooth muscle of the chicken. J Auton Nerv Syst. 1982 Sep;6(2):199–210. doi: 10.1016/0165-1838(82)90051-0. [DOI] [PubMed] [Google Scholar]
  23. Komori S., Ohashi H. Some membrane properties of the circular muscle of chicken rectum and its non-adrenergic non-cholinergic innervation. J Physiol. 1988 Jul;401:417–435. doi: 10.1113/jphysiol.1988.sp017170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meldrum L. A., Burnstock G. Investigations into the identity of the non-adrenergic, non-cholinergic excitatory transmitter in the smooth muscle of chicken rectum. Comp Biochem Physiol C. 1985;81(2):307–309. doi: 10.1016/0742-8413(85)90011-8. [DOI] [PubMed] [Google Scholar]
  25. Nakazawa K., Matsuki N. Adenosine triphosphate-activated inward current in isolated smooth muscle cells from rat vas deferens. Pflugers Arch. 1987 Aug;409(6):644–646. doi: 10.1007/BF00584668. [DOI] [PubMed] [Google Scholar]
  26. Nanoff C., Freissmuth M., Tuisl E., Schütz W. P2-, but not P1-purinoceptors mediate formation of 1, 4, 5-inositol trisphosphate and its metabolites via a pertussis toxin-insensitive pathway in the rat renal cortex. Br J Pharmacol. 1990 May;100(1):63–68. doi: 10.1111/j.1476-5381.1990.tb12052.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ohashi H., Naito K., Takewaki T., Okada T. Non-cholinergic, excitatory junction potentials in smooth muscle of chicken rectum. Jpn J Pharmacol. 1977 Jun;27(3):379–387. doi: 10.1254/jjp.27.379. [DOI] [PubMed] [Google Scholar]
  28. Phaneuf S., Berta P., Casanova J., Cavadore J. C. ATP stimulates inositol phosphates accumulation and calcium mobilization in a primary culture of rat aortic myocytes. Biochem Biophys Res Commun. 1987 Mar 13;143(2):454–460. doi: 10.1016/0006-291x(87)91375-1. [DOI] [PubMed] [Google Scholar]
  29. Sneddon P., Burnstock G. ATP as a co-transmitter in rat tail artery. Eur J Pharmacol. 1984 Oct 30;106(1):149–152. doi: 10.1016/0014-2999(84)90688-5. [DOI] [PubMed] [Google Scholar]
  30. Sneddon P., Westfall D. P., Fedan J. S. Cotransmitters in the motor nerves of the guinea pig vas deferens: electrophysiological evidence. Science. 1982 Nov 12;218(4573):693–695. doi: 10.1126/science.6291151. [DOI] [PubMed] [Google Scholar]
  31. Sneddon P., Westfall D. P. Pharmacological evidence that adenosine triphosphate and noradrenaline are co-transmitters in the guinea-pig vas deferens. J Physiol. 1984 Feb;347:561–580. doi: 10.1113/jphysiol.1984.sp015083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Suzuki H. Electrical responses of smooth muscle cells of the rabbit ear artery to adenosine triphosphate. J Physiol. 1985 Feb;359:401–415. doi: 10.1113/jphysiol.1985.sp015592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Suzuki H., Kou K. Electrical components contributing to the nerve-mediated contractions in the smooth muscles of the rabbit ear artery. Jpn J Physiol. 1983;33(5):743–756. doi: 10.2170/jjphysiol.33.743. [DOI] [PubMed] [Google Scholar]
  34. Takewaki T., Ohashi O. Non-cholinergic excitatory transmission to intestinal smooth muscle cells. Nature. 1977 Aug 25;268(5622):749–750. doi: 10.1038/268749a0. [DOI] [PubMed] [Google Scholar]
  35. Tawada Y., Furukawa K., Shigekawa M. ATP-induced calcium transient in cultured rat aortic smooth muscle cells. J Biochem. 1987 Dec;102(6):1499–1509. doi: 10.1093/oxfordjournals.jbchem.a122197. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES