Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 Jul;155(1):90–96. doi: 10.1128/jb.155.1.90-96.1983

Temperature dependence of growth and membrane-bound activities of Chloroflexus aurantiacus energy metabolism.

J Oelze, R C Fuller
PMCID: PMC217656  PMID: 6863222

Abstract

The temperature dependence of various activities related to the energy metabolism of isolated membranes and whole cells of the thermophilic bacterium Chloroflexus aurantiacus was determined after phototrophic growth at either 40, 50, or 60 degrees C. The data obtained were expressed by use of Arrhenius plots. Maximum activities were determined at about 65 degrees C for succinate 2,4-dichlorophenol-indophenol reductase as well as NADH oxidase and at about 70 degrees C for Mg-ATPase and for light-induced proton extrusion by cells. Activation energies for Mg-ATPase and light-induced proton extrusion were about 40 kJ mol-1 from 30 degrees C to about 50 degrees C and they increased significantly at higher temperatures. Essentially the same dependency was detectable with NADH oxidase, except for an increase in activation energy below 41 degrees C. All of these responses were independent of growth temperature. Succinate-2,4-dichlorophenol-indophenol reductase showed a change in activation energy around 41 degrees C only with cells grown at 60 degrees C. Differences in the responses of cells grown at different temperatures were identified on the basis of changes from sigmoidal to hyperbolic kinetics for light saturation of proton extrusion. Moreover, the thermostability of proton extrusion was maximal when assayed at the corresponding growth temperatures. In any case, thermostability was lowest at the 65 and 68 degrees C assay temperatures. Differential scanning calorimetry with membranes revealed irreversible heat uptake from about 60 to 72 degrees C. The results are discussed in light of the activation energy for the specific growth rate, which is lowest at temperatures from 40 degrees C to the optimum at 60 degrees C.

Full text

PDF
90

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birrell G. B., Sistrom W. R., Griffith O. H. Lipid-protein associations in chromatophores from the photosynthetic bacterium Rhodopseudomonas sphaeroides. Biochemistry. 1978 Sep 5;17(18):3768–3773. doi: 10.1021/bi00611a015. [DOI] [PubMed] [Google Scholar]
  2. Fraley R. T., Yen G. S., Lueking D. R., Kaplan S. The physical state of the intracytoplasmic membrane of Rhodopseudomonas sphaeroides and its relationship to the cell division cycle. J Biol Chem. 1979 Mar 25;254(6):1987–1991. [PubMed] [Google Scholar]
  3. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  4. Melchior D. L., Steim J. M. Thermotropic transitions in biomembranes. Annu Rev Biophys Bioeng. 1976;5:205–238. doi: 10.1146/annurev.bb.05.060176.001225. [DOI] [PubMed] [Google Scholar]
  5. Oelze J., Kamen M. D. Separation of respiratory reactions in Rhodospirillum rubrum: inhibition studies with 2-hydroxydiphenyl. Biochim Biophys Acta. 1975 Apr 14;387(1):1–11. doi: 10.1016/0005-2728(75)90047-x. [DOI] [PubMed] [Google Scholar]
  6. Oelze J., Post E. The dependency of proton extrusion in the light on the developmental stage of the photosynthetic apparatus in Rhodospirillum rubrum. Biochim Biophys Acta. 1980 Jun 10;591(1):76–81. doi: 10.1016/0005-2728(80)90221-2. [DOI] [PubMed] [Google Scholar]
  7. Payne W. J., Wiebe W. J. Growth yield and efficiency in chemosynthetic microorganisms. Annu Rev Microbiol. 1978;32:155–183. doi: 10.1146/annurev.mi.32.100178.001103. [DOI] [PubMed] [Google Scholar]
  8. Pierson B. K., Castenholz R. W. A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol. 1974;100(1):5–24. doi: 10.1007/BF00446302. [DOI] [PubMed] [Google Scholar]
  9. Silvius J. R., Read B. D., McElhaney R. N. Membrane enzymes: artifacts in Arrhenius plots due to temperature dependence of substrate-binding affinity. Science. 1978 Feb 24;199(4331):902–904. doi: 10.1126/science.146257. [DOI] [PubMed] [Google Scholar]
  10. Sprague S. G., Staehelin L. A., DiBartolomeis M. J., Fuller R. C. Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. J Bacteriol. 1981 Sep;147(3):1021–1031. doi: 10.1128/jb.147.3.1021-1031.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES