Abstract
A bifunctional enzyme, L-(+)-tartrate dehydrogenase-D-(+)-malate dehydrogenase (decarboxylating) (EC 1.1.1.93 and EC 1.1.1. . . , respectively), was discovered in cells of Rhodopseudomonas sphaeroides Y, which accounts for the ability of this organism to grow on L-(+)-malate. The enzyme was purified 110-fold to homogeneity with a yield of 51%. During the course of purification, including ion-exchange chromatography and preparative gel electrophoresis, both enzyme activities appeared to be in association. The ratio of their activities remained almost constant [1:10, L-(+)-tartrate dehydrogenase/D-(+)-malate dehydrogenase (decarboxylating)] throughout all steps of purification. Analysis by polyacrylamide gel electrophoresis revealed the presence of a single protein band, the position of which was coincident with both L-(+)-tartrate dehydrogenase and D-(+)-malate dehydrogenase (decarboxylating) activities. The apparent molecular weight of the enzyme was determined to be 158,000 by gel filtration and 162,000 by ultracentrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis yielded a single polypeptide chain with an estimated molecular weight of 38,500, indicating that the enzyme consisted of four subunits of identical size. The isoelectric point of the enzyme was between pH 5.0 and 5.2. The enzyme catalyzed the NAD-linked oxidation of L-(+)-tartrate as well as the oxidative decarboxylation of D-(+)-malate. For both reactions, the optimal pH was in a range from 8.4 to 9.0. The activation energy of the reaction (delta Ho) was 71.8 kJ/mol for L-(+)-tartrate and 54.6 kJ/mol for D-(+)-malate. NAD was required as a cosubstrate, and optimal activity depended on the presence of both Mn2+ and NH4+ ions. The reactions followed Michaelis-Menten kinetics, and the apparent Km values of the individual reactants were determined to be: L-(+)-tartrate, 2.3 X 10(-3) M; NAD, 2.8 X 10(-4) M; and Mn2+, 1.6 X 10(-5) M with respect to L-(+)-tartrate; and D-(+)-malate, 1.7 X 10(-4) M; NAD, 1.3 X 10(-4); and Mn2+, 1.6 X 10(-5) M with respect to D-(+)-malate. Of a variety of compounds tested, only meso-tartrate, oxaloacetate, and dihydroxyfumarate were effective inhibitors. meso-Tartrate and oxaloacetate caused competitive inhibition, whereas dihydroxyfumarate caused noncompetitive inhibition. The Ki values determined for the inhibitors were, in the above sequence, 1.0, 0.014, and 0.06 mM with respect to L-(+)-tartrate and 0.28, 0.012, and 0.027 mM with respect to D-(+)-malate.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. H., Jakoby W. B. Tartaric acid metabolism. IX. Synthesis with tartrate epoxidase. J Biol Chem. 1969 Apr 25;244(8):2078–2084. [PubMed] [Google Scholar]
- Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
- DAGLEY S., TRUDGILL P. W. THE METABOLISM OF TARTARIC ACID BY A PSEUDOMONAS. A NEW PATHWAY. Biochem J. 1963 Oct;89:22–31. doi: 10.1042/bj0890022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giffhorn F., Gottschalk G. Effect of growth conditions on the activation and inactivation of citrate lyase of Rhodopseudomonas gelatinosa. J Bacteriol. 1975 Dec;124(3):1046–1051. doi: 10.1128/jb.124.3.1046-1051.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giffhorn F., Zimmermann T., Kuhn A. Substrate specificity of citrate lyase deacetylase of Rhodopseudomonas gelatinosa and Rhodopseudomonas palustris. J Bacteriol. 1981 Aug;147(2):463–470. doi: 10.1128/jb.147.2.463-470.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi M., Unemoto T. The presence of D-malate dehydrogenase (D-malate:NAD oxidoreductase) in Serratia marcescens. Biochim Biophys Acta. 1966 Aug 10;122(2):374–376. doi: 10.1016/0926-6593(66)90082-8. [DOI] [PubMed] [Google Scholar]
- Hopper D. J., Chapman P. J., Dagley S. Enzymic formation of D-malate. Biochem J. 1968 Dec;110(4):798–800. doi: 10.1042/bj1100798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopper D. J., Chapman P. J., Dagley S. Metabolism of l-Malate and d-Malate by a Species of Pseudomonas. J Bacteriol. 1970 Dec;104(3):1197–1202. doi: 10.1128/jb.104.3.1197-1202.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwakura M., Tokushige M., Katsuki H., Muramatsu S. Studies on regulatory functions of malic enzymes. V. Comparative studies of malic enzymes in bacteria. J Biochem. 1978 May;83(5):1387–1394. doi: 10.1093/oxfordjournals.jbchem.a132048. [DOI] [PubMed] [Google Scholar]
- JUNI E., HEYM G. A. Determination of carbonyl acids formed upon periodate oxidation. I. Assay procedure. Anal Biochem. 1962 Aug;4:143–158. doi: 10.1016/0003-2697(62)90031-3. [DOI] [PubMed] [Google Scholar]
- JUNI E., HEYM G. A. Determination of carbonyl acids formed upon periodate oxidation. II. Analysis of various carbonyl acid precursors. Anal Biochem. 1962 Aug;4:159–181. doi: 10.1016/0003-2697(62)90032-5. [DOI] [PubMed] [Google Scholar]
- KRAMPITZ L. O., LYNEN F. MECHANISM OF TARTRATE DISSIMILATION. Biochem Z. 1964 Dec 7;341:97–108. [PubMed] [Google Scholar]
- KUN E. Enzymatic mechanism of oxidation of tartrate. J Biol Chem. 1956 Jul;221(1):223–230. [PubMed] [Google Scholar]
- KUN E., GARCIA HERNANDEZ M. The oxidation of tartaric acid by an enzyme system of mitochondria. J Biol Chem. 1956 Jan;218(1):201–211. [PubMed] [Google Scholar]
- Klatt K. P., Rick P. D., Gander J. E. The metabolism of tartaric acid by Penicillium charlesii. Arch Biochem Biophys. 1969 Nov;134(2):335–345. doi: 10.1016/0003-9861(69)90292-6. [DOI] [PubMed] [Google Scholar]
- Knichel W., Radler F. D-Malic enzyme of Pseudomonas fluorescens. Eur J Biochem. 1982 Apr;123(3):547–552. doi: 10.1111/j.1432-1033.1982.tb06567.x. [DOI] [PubMed] [Google Scholar]
- Kohn L. D., Jakoby W. B. Tartaric acid metabolism II. Crystalline protein converting meso-tartrate and dihydroxyfumarate to glycerate. Biochem Biophys Res Commun. 1966 Jan 4;22(1):33–37. doi: 10.1016/0006-291x(66)90598-5. [DOI] [PubMed] [Google Scholar]
- Kohn L. D., Jakoby W. B. Tartaric acid metabolism. 3. The formation of glyceric acid. J Biol Chem. 1968 May 25;243(10):2465–2471. [PubMed] [Google Scholar]
- Kohn L. D., Packman P. M., Allen R. H., Jakoby W. B. Tartaric acid metabolism. V. Crystalline tartrate dehydrogenase. J Biol Chem. 1968 May 25;243(10):2479–2485. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MARTIN W. R., FOSTER J. W. Adaptation patterns in the utilization of the stereo-isomers of tartaric acid by a pseudomonad. J Bacteriol. 1957 May;73(5):683–684. doi: 10.1128/jb.73.5.683-684.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARTIN W. R., FOSTER J. W. Production of trans-L-epoxysuccinic acid by fungi and its microbiological conversion to meso-tartartic acid. J Bacteriol. 1955 Oct;70(4):405–414. doi: 10.1128/jb.70.4.405-414.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rode H., Giffhorn F. Adaptation of Rhodopseudomonas sphaeroides to Growth on d-(-)-Tartrate and Large-Scale Production of a Constitutive d-(-)-Tartrate Dehydratase During Growth on dl-Malate. Appl Environ Microbiol. 1983 Feb;45(2):716–719. doi: 10.1128/aem.45.2.716-719.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rode H., Giffhorn F. D-(--)-tartrate dehydratase of Rhodopseudomonas sphaeroides: purification, characterization, and application to enzymatic determination of D-(--)-tartrate. J Bacteriol. 1982 Jun;150(3):1061–1068. doi: 10.1128/jb.150.3.1061-1068.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rode H., Giffhorn F. Ferrous- or cobalt ion-dependent D-(-)-tartrate dehydratase of pseudomonads: purification and properties. J Bacteriol. 1982 Sep;151(3):1602–1604. doi: 10.1128/jb.151.3.1602-1604.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHILO M. The enzymic conversion of the tartaric acids to oxaloacetic acid. J Gen Microbiol. 1957 Apr;16(2):472–481. doi: 10.1099/00221287-16-2-472. [DOI] [PubMed] [Google Scholar]
- Stafford H. A. Tartaric Acid Dehydrogenase Activity in Higher Plants. Plant Physiol. 1957 Jul;32(4):338–345. doi: 10.1104/pp.32.4.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stahl C. L., Sojka G. A. Growth of Rhodopseudomonas capsulata on L- and D-malic acid. Biochim Biophys Acta. 1973 Feb 28;297(2):241–245. doi: 10.1016/0304-4165(73)90070-6. [DOI] [PubMed] [Google Scholar]
- Vaughn R. H., Marsh G. L., Stadtman T. C., Cantino B. C. Decomposition of Tartrates by the Coliform Bacteria. J Bacteriol. 1946 Sep;52(3):311–325. [PMC free article] [PubMed] [Google Scholar]
- van Niel C. B. THE CULTURE, GENERAL PHYSIOLOGY, MORPHOLOGY, AND CLASSIFICATION OF THE NON-SULFUR PURPLE AND BROWN BACTERIA. Bacteriol Rev. 1944 Mar;8(1):1–118. doi: 10.1128/br.8.1.1-118.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]

