Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 Jul;155(1):345–350. doi: 10.1128/jb.155.1.345-350.1983

Isolation of the carotenoid-containing cell wall of three unicellular cyanobacteria.

C M Resch, J Gibson
PMCID: PMC217686  PMID: 6408062

Abstract

A carotenoid-containing membrane fraction devoid of chlorophyll and phycobiliproteins was isolated from three unicellular cyanobacteria, Synechococcus sp., Synechococcus leopoliensis UTEX 625, and Anacystis nidulans R-2, by aqueous-phase separation, hydrophobic chromatography, and differential centrifugation. The presence of 2-keto-3-deoxyoctonate, muramic acid, and diaminopimelic acid suggests that the preparation is highly enriched in cell wall. Electron micrographs of thin sections of this material showed C-shaped membrane profiles similar to those seen in other gram-negative cell wall preparations. The inactivation of cyanophage AS-1 by this fraction confirmed its identity as cell wall. The cell wall contained approximately equal weights of total carbohydrate and protein. Absorption maxima at 434, 452, and 488 nm indicated the presence of carotenoids. These were in the outer membrane and were not due to contaminating cytoplasmic or thylakoid membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the preparations showed a broad band of approximately 50,000 molecular weight which contained 35% of the total outer membrane protein. This band was resolved into at least two components running at approximately 50,000 and 52,000 molecular weight. The smaller of these polypeptides was a glycoprotein. The polypeptide components were unaffected by protease or detergent treatment in either whole cells or isolated cell wall preparations, indicating that the polypeptide components were not exposed to the surface or easily removed from the hydrophobic environment.

Full text

PDF
345

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. FRANK H., LEFORT M., MARTIN H. H. Chemical analysis of a mucopolymer component in cell walls of the blue-green alga Phormidium uncinatum. Biochem Biophys Res Commun. 1962 May 4;7:322–325. doi: 10.1016/0006-291x(62)90200-0. [DOI] [PubMed] [Google Scholar]
  2. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  3. Golecki J. R. Studies on ultrastructure and composition of cell walls of the cyanobacterium Anacystis nidulans. Arch Microbiol. 1977 Jul 26;114(1):35–41. doi: 10.1007/BF00429627. [DOI] [PubMed] [Google Scholar]
  4. Ihlenfeldt M. J., Gibson J. CO2 fixation and its regulation in Anacystis nidulans (Synechococcus). Arch Microbiol. 1975;102(1):13–21. doi: 10.1007/BF00428339. [DOI] [PubMed] [Google Scholar]
  5. Karkhanis Y. D., Zeltner J. Y., Jackson J. J., Carlo D. J. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of Gram-negative bacteria. Anal Biochem. 1978 Apr;85(2):595–601. doi: 10.1016/0003-2697(78)90260-9. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  8. Mikheyskaya L. V., Ovodova R. G., Ovodov Y. S. Isolation and characterization of lipopolysaccharides from cell walls of blue-green algae of the genus Phormidium. J Bacteriol. 1977 Apr;130(1):1–3. doi: 10.1128/jb.130.1.1-3.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Osborn M. J., Munson R. Separation of the inner (cytoplasmic) and outer membranes of Gram-negative bacteria. Methods Enzymol. 1974;31:642–653. doi: 10.1016/0076-6879(74)31070-1. [DOI] [PubMed] [Google Scholar]
  10. Schnaitman C. A. Effect of ethylenediaminetetraacetic acid, Triton X-100, and lysozyme on the morphology and chemical composition of isolate cell walls of Escherichia coli. J Bacteriol. 1971 Oct;108(1):553–563. doi: 10.1128/jb.108.1.553-563.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev. 1971 Jun;35(2):171–205. doi: 10.1128/br.35.2.171-205.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Weise G., Drews G., Jann B., Jann K. Identification and analysis of a lipopolysaccharide in cell walls of the blue-green alga Anacystis nidulans. Arch Mikrobiol. 1970;71(1):89–98. doi: 10.1007/BF00412238. [DOI] [PubMed] [Google Scholar]
  13. Wolf-Watz H., Normark S., Bloom G. D. Rapid method for isolation of large quantities of outer membrane from Escherichia coli K-12 and its application to the study of envelope mutants. J Bacteriol. 1973 Sep;115(3):1191–1197. doi: 10.1128/jb.115.3.1191-1197.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES