Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 Jul;155(1):417–419. doi: 10.1128/jb.155.1.417-419.1983

Role of L-lysine-alpha-ketoglutarate aminotransferase in catabolism of lysine as a nitrogen source for Rhodotorula glutinis.

J J Kinzel, M K Winston, J K Bhattacharjee
PMCID: PMC217696  PMID: 6408065

Abstract

Wild-type and saccharopine dehydrogenaseless mutant strains of Rhodotorula glutinis grew in minimal medium containing lysine as the sole nitrogen source and simultaneously accumulated, in the culture supernatant, large amounts of a product identified as alpha-aminoadipic-delta-semialdehyde. The saccharopine dehydrogenase and pipecolic acid oxidase levels remained unchanged in wild-type cells grown in the presence of ammonium or lysine as the nitrogen source. Lysine-alpha-ketoglutarate aminotransferase activity was demonstrated in ammonium-grown cells. This activity was depressed in cells grown in the presence of lysine as the sole source of nitrogen.

Full text

PDF
417

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhattacharjee J. K., Sinha A. K. Relationship among the genes, enzymes, and intermediates of the biosynthetic pathway of lysine in Saccharomyces. Mol Gen Genet. 1972;115(1):26–30. doi: 10.1007/BF00272214. [DOI] [PubMed] [Google Scholar]
  2. Chang Y. F., Adams E. Glutarate semialdehyde dehydrogenase of Pseudomonas. Purification, properties, and relation to L-lysine catabolism. J Biol Chem. 1977 Nov 25;252(22):7979–7986. [PubMed] [Google Scholar]
  3. Fellows F. C., Lewis M. H. Lysine metabolism in mammals. Biochem J. 1973 Oct;136(2):329–334. doi: 10.1042/bj1360329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gaillardin C., Fournier P., Sylvestre G., Heslot H. Mutants of Saccharomycopsis lipolytica defective in lysine catabolism. J Bacteriol. 1976 Jan;125(1):48–57. doi: 10.1128/jb.125.1.48-57.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Guengerich F. P., Broquist H. P. Lysine catabolism in Rhizoctonia leguminicola and related fungi. J Bacteriol. 1976 Apr;126(1):338–347. doi: 10.1128/jb.126.1.338-347.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gupta R. N., Spenser I. D. Biosynthesis of the piperidine nucleus. The mode of incorporation of lysine into pipecolic acid and into piperidine alkaloids. J Biol Chem. 1969 Jan 10;244(1):88–94. [PubMed] [Google Scholar]
  7. Hedrick L. R., Dupont P. D. The utilization of L-amino acids as carbon source by yeasts of the genera Hansenula and Trichosporon. Antonie Van Leeuwenhoek. 1968;34(4):465–473. doi: 10.1007/BF02046468. [DOI] [PubMed] [Google Scholar]
  8. Higashino K., Tsukada K., Lieberman I. Saccharopine, a product of lysine breakdown by mammalian liver. Biochem Biophys Res Commun. 1965 Jul 26;20(3):285–290. doi: 10.1016/0006-291x(65)90361-x. [DOI] [PubMed] [Google Scholar]
  9. Kinzel J. J., Bhattacharjee J. K. Lysine biosynthesis in Rhodotorula glutinis: properties of pipecolic acid oxidase. J Bacteriol. 1982 Sep;151(3):1073–1077. doi: 10.1128/jb.151.3.1073-1077.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kinzel J. J., Bhattacharjee J. K. Role of pipecolic acid in the biosynthesis of lysine in Rhodotorula glutinis. J Bacteriol. 1979 May;138(2):410–417. doi: 10.1128/jb.138.2.410-417.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kurtz M., Bhattacharjee J. K. Biosynthesis of lysine in Rhodotorula glutinis: role of pipecolic acid. J Gen Microbiol. 1975 Jan;86(1):103–110. doi: 10.1099/00221287-86-1-103. [DOI] [PubMed] [Google Scholar]
  12. Misono H., Nagasaki S. Occurrence of L-lysine epsilon-dehydrogenase in Agrobacterium tumefaciens. J Bacteriol. 1982 Apr;150(1):398–401. doi: 10.1128/jb.150.1.398-401.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. ROTHSTEIN M., MILLER L. L. The conversion of lysine to pipecolic acid in the rat. J Biol Chem. 1954 Dec;211(2):851–858. [PubMed] [Google Scholar]
  14. Rothstein M. Intermediates of lysine dissimilation in the yeast, Hansenula saturnus. Arch Biochem Biophys. 1965 Aug;111(2):467–476. doi: 10.1016/0003-9861(65)90210-9. [DOI] [PubMed] [Google Scholar]
  15. SAGISAKA S., SHIMURA K. Enzymic reduction of alpha-amino-adipic acid by yeast enzyme. Nature. 1959 Nov 28;184(Suppl 22):1709–1710. doi: 10.1038/1841709b0. [DOI] [PubMed] [Google Scholar]
  16. SCHWEET R. S., HOLDEN J. T., LOWY P. H. The metabolism of lysine in Neurospora. J Biol Chem. 1954 Dec;211(2):517–529. [PubMed] [Google Scholar]
  17. Soda K., Misono H., Yamamoto T. L-Lysine:alpha-ketoglutarate aminotransferase. I. Identification of a product, delta-1-piperideine-6-carboxylic acid. Biochemistry. 1968 Nov;7(11):4102–4109. doi: 10.1021/bi00851a045. [DOI] [PubMed] [Google Scholar]
  18. Sumrada R., Cooper T. Basic amino acid inhibition of growth in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1976 Jan 26;68(2):598–602. doi: 10.1016/0006-291x(76)91187-6. [DOI] [PubMed] [Google Scholar]
  19. Winston M. K., Bhattacharjee J. K. Growth inhibition by alpha-aminoadipate and reversal of the effect by specific amino acid supplements in Saccharomyces cerevisiae. J Bacteriol. 1982 Nov;152(2):874–879. doi: 10.1128/jb.152.2.874-879.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES